These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18059620)

  • 1. Effects of exercise on brain function: role of free radicals.
    Radak Z; Kumagai S; Taylor AW; Naito H; Goto S
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):942-6. PubMed ID: 18059620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of cocoa supplementation, caloric restriction, and regular exercise, on oxidative stress markers of brain and memory in the rat model.
    Radák Z; Silye G; Bartha C; Jakus J; Stefanovits-Bányai E; Atalay M; Marton O; Koltai E
    Food Chem Toxicol; 2013 Nov; 61():36-41. PubMed ID: 23419390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radicals and oxidative stress in exercise--immunological aspects.
    Niess AM; Dickhuth HH; Northoff H; Fehrenbach E
    Exerc Immunol Rev; 1999; 5():22-56. PubMed ID: 10519061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic adaptation to oxidative challenge induced by regular exercise.
    Radak Z; Chung HY; Goto S
    Free Radic Biol Med; 2008 Jan; 44(2):153-9. PubMed ID: 18191751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The redox-associated adaptive response of brain to physical exercise.
    Radak Z; Ihasz F; Koltai E; Goto S; Taylor AW; Boldogh I
    Free Radic Res; 2014 Jan; 48(1):84-92. PubMed ID: 23870001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical exercise, reactive oxygen species and neuroprotection.
    Radak Z; Suzuki K; Higuchi M; Balogh L; Boldogh I; Koltai E
    Free Radic Biol Med; 2016 Sep; 98():187-196. PubMed ID: 26828019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radicals, exercise, apoptosis, and heat shock proteins.
    Fehrenbach E; Northoff H
    Exerc Immunol Rev; 2001; 7():66-89. PubMed ID: 11579749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free radicals in the physiological control of cell function.
    Dröge W
    Physiol Rev; 2002 Jan; 82(1):47-95. PubMed ID: 11773609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hallmarks of protein oxidative damage in neurodegenerative diseases: focus on Alzheimer's disease.
    Polidori MC; Griffiths HR; Mariani E; Mecocci P
    Amino Acids; 2007; 32(4):553-9. PubMed ID: 17273806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise, oxidative stress and hormesis.
    Radak Z; Chung HY; Koltai E; Taylor AW; Goto S
    Ageing Res Rev; 2008 Jan; 7(1):34-42. PubMed ID: 17869589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise, redox system and neurodegenerative diseases.
    Quan H; Koltai E; Suzuki K; Aguiar AS; Pinho R; Boldogh I; Berkes I; Radak Z
    Biochim Biophys Acta Mol Basis Dis; 2020 Oct; 1866(10):165778. PubMed ID: 32222542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise and hormesis: oxidative stress-related adaptation for successful aging.
    Radak Z; Chung HY; Goto S
    Biogerontology; 2005; 6(1):71-5. PubMed ID: 15834665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus.
    Cechetti F; Fochesatto C; Scopel D; Nardin P; Gonçalves CA; Netto CA; Siqueira IR
    Brain Res; 2008 Jan; 1188():182-8. PubMed ID: 18021756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3,5,4'-Trihydroxy-6,7,3'-trimethoxyflavone protects astrocytes against oxidative stress via interference with cell signaling and by reducing the levels of intracellular reactive oxygen species.
    Elmann A; Telerman A; Mordechay S; Erlank H; Rindner M; Ofir R; Kashman Y
    Neurochem Int; 2014 Dec; 78():67-75. PubMed ID: 25217804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes.
    Calabrese V; Boyd-Kimball D; Scapagnini G; Butterfield DA
    In Vivo; 2004; 18(3):245-67. PubMed ID: 15341181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation.
    Bar-Shai M; Carmeli E; Ljubuncic P; Reznick AZ
    Free Radic Biol Med; 2008 Jan; 44(2):202-14. PubMed ID: 18191756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submolecular adventures of brain tyrosine: what are we searching for now?
    Kochman A; Kośka C; Metodiewa D
    Amino Acids; 2002; 23(1-3):95-101. PubMed ID: 12373523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.