These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18059764)

  • 1. Frequency-domain technique for optical property measurements in moderately scattering media.
    Gerken M; Godfrey D; Faris GW
    Opt Lett; 2000 Jan; 25(1):7-9. PubMed ID: 18059764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-precision frequency-domain measurements of the optical properties of turbid media.
    Gerken M; Faris GW
    Opt Lett; 1999 Jul; 24(14):930-2. PubMed ID: 18073899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration.
    Coquoz O; Svaasand LO; Tromberg BJ
    Appl Opt; 2001 Dec; 40(34):6281-91. PubMed ID: 18364934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency domain measurements on turbid media with strong absorption using the PN approximation.
    Baltes C; Faris GW
    Appl Opt; 2009 Jun; 48(16):2991-3000. PubMed ID: 19488110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom.
    Fishkin JB; So PT; Cerussi AE; Fantini S; Franceschini MA; Gratton E
    Appl Opt; 1995 Mar; 34(7):1143-55. PubMed ID: 21037643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry.
    Nicolaides L; Chen Y; Mandelis A; Vitkin IA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2548-56. PubMed ID: 11583272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light diffusion model for determination of optical properties of rectangular parallelepiped highly scattering media.
    Taniguchi J; Murata H; Okamura Y
    Appl Opt; 2007 May; 46(14):2649-55. PubMed ID: 17446913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique.
    Fantini S; Franceschini MA; Fishkin JB; Barbieri B; Gratton E
    Appl Opt; 1994 Aug; 33(22):5204-13. PubMed ID: 20935909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-domain immersion technique for accurate optical property measurements of turbid media.
    Gerken M; Faris GW
    Opt Lett; 1999 Dec; 24(23):1726-8. PubMed ID: 18079916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance.
    Pham TH; Spott T; Svaasand LO; Tromberg BJ
    Appl Opt; 2000 Sep; 39(25):4733-45. PubMed ID: 18350066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved topographic reconstruction of turbid media in the spatial frequency domain including the determination of the reduced scattering and absorption coefficients.
    Geiger S; Hank P; Kienle A
    J Opt Soc Am A Opt Image Sci Vis; 2023 Feb; 40(2):294-304. PubMed ID: 36821199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain.
    Chen W; Zhao H; Li T; Yan P; Zhao K; Qi C; Gao F
    Biomed Eng Online; 2017 Aug; 16(1):100. PubMed ID: 28789661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference.
    Xu H; Patterson MS
    Opt Express; 2006 Jul; 14(14):6485-501. PubMed ID: 19516827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging.
    Fabbri F; Franceschini MA; Fantini S
    Appl Opt; 2003 Jun; 42(16):3063-72. PubMed ID: 12790458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain.
    Hebden JC; Arridge SR
    Appl Opt; 1996 Dec; 35(34):6788-96. PubMed ID: 21151264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method.
    Martelli F; Zaccanti G
    Opt Express; 2007 Jan; 15(2):486-500. PubMed ID: 19532267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of optical coefficients and fractal dimensional parameters of cancerous and normal prostate tissues.
    Pu Y; Wang W; Al-Rubaiee M; Gayen SK; Xu M
    Appl Spectrosc; 2012 Jul; 66(7):828-34. PubMed ID: 22710079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods.
    Bevilacqua F; Berger AJ; Cerussi AE; Jakubowski D; Tromberg BJ
    Appl Opt; 2000 Dec; 39(34):6498-507. PubMed ID: 18354663
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.