These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18059794)

  • 1. Analysis of air-guiding photonic bandgap fibers.
    Broeng J; Barkou SE; Søndergaard T; Bjarklev A
    Opt Lett; 2000 Jan; 25(2):96-8. PubMed ID: 18059794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2006 Apr; 14(7):2979-93. PubMed ID: 19516437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design.
    Yan M; Shum P
    Opt Lett; 2005 Aug; 30(15):1920-2. PubMed ID: 16092219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring modal properties of inhibited-coupling guiding fibers by cladding modification.
    Osório JH; Chafer M; Debord B; Giovanardi F; Cordier M; Maurel M; Delahaye F; Amrani F; Vincetti L; Gérôme F; Benabid F
    Sci Rep; 2019 Feb; 9(1):1376. PubMed ID: 30718764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow-core photonic bandgap fibers based on a square lattice cladding.
    Poletti F; Richardson DJ
    Opt Lett; 2007 Aug; 32(16):2282-4. PubMed ID: 17700759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of air-guiding honeycomb photonic bandgap fiber.
    Yan M; Shum P; Hu J
    Opt Lett; 2005 Mar; 30(5):465-7. PubMed ID: 15789704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large mode area silicon microstructured fiber with robust dual mode guidance.
    Healy N; Sparks JR; Petrovich MN; Sazio PJ; Badding JV; Peacock AC
    Opt Express; 2009 Sep; 17(20):18076-82. PubMed ID: 19907597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers.
    Caillaud C; Renversez G; Brilland L; Mechin D; Calvez L; Adam JL; Troles J
    Materials (Basel); 2014 Aug; 7(9):6120-6129. PubMed ID: 28788180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of surface modes in low loss hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Gèrôme F; Leon-Saval SG; Broderick NG; Birks TA; Knight JC
    Opt Express; 2008 Jan; 16(2):1142-9. PubMed ID: 18542188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long period gratings in air-core photonic bandgap fibers.
    Wang Y; Jin W; Ju J; Xuan H; Ho HL; Xiao L; Wang D
    Opt Express; 2008 Feb; 16(4):2784-90. PubMed ID: 18542362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid photonic bandgap effect in twisted hollow-core photonic bandgap fibers.
    Zhu Y; Li W; Gao F; Xu X; Song N
    Opt Lett; 2022 Dec; 47(23):6161-6164. PubMed ID: 37219197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High group birefringence in air-core photonic bandgap fibers.
    Alam MS; Saitoh K; Koshiba M
    Opt Lett; 2005 Apr; 30(8):824-6. PubMed ID: 15865367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers.
    Murao T; Saitoh K; Koshiba M
    Opt Express; 2009 Apr; 17(9):7615-29. PubMed ID: 19399140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers.
    Kim HK; Digonnet M; Kino G; Shin J; Fan S
    Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doped photonic bandgap fibers for short-wavelength nonlinear devices.
    Laegsgaard J; Bjarklev A
    Opt Lett; 2003 May; 28(10):783-5. PubMed ID: 12779145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-core, liquid-cladding photonic crystal fibers.
    De Matos CJ; Cordeiro CM; Dos Santos EM; Ong JS; Bozolan A; Brito Cruz CH
    Opt Express; 2007 Sep; 15(18):11207-12. PubMed ID: 19547475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers.
    Skorobogatiy M; Saitoh K; Koshiba M
    Opt Express; 2008 Sep; 16(19):14945-53. PubMed ID: 18795031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.