These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers. Dangui V; Digonnet MJ; Kino GS Opt Express; 2006 Apr; 14(7):2979-93. PubMed ID: 19516437 [TBL] [Abstract][Full Text] [Related]
3. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design. Yan M; Shum P Opt Lett; 2005 Aug; 30(15):1920-2. PubMed ID: 16092219 [TBL] [Abstract][Full Text] [Related]
4. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers. Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167 [TBL] [Abstract][Full Text] [Related]
5. Photonic bandgap fibers with resonant structures for tailoring the dispersion. Várallyay Z; Saitoh K; Szabó A; Szipocs R Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101 [TBL] [Abstract][Full Text] [Related]
6. Tailoring modal properties of inhibited-coupling guiding fibers by cladding modification. Osório JH; Chafer M; Debord B; Giovanardi F; Cordier M; Maurel M; Delahaye F; Amrani F; Vincetti L; Gérôme F; Benabid F Sci Rep; 2019 Feb; 9(1):1376. PubMed ID: 30718764 [TBL] [Abstract][Full Text] [Related]
12. Control of surface modes in low loss hollow-core photonic bandgap fibers. Amezcua-Correa R; Gèrôme F; Leon-Saval SG; Broderick NG; Birks TA; Knight JC Opt Express; 2008 Jan; 16(2):1142-9. PubMed ID: 18542188 [TBL] [Abstract][Full Text] [Related]
13. Long period gratings in air-core photonic bandgap fibers. Wang Y; Jin W; Ju J; Xuan H; Ho HL; Xiao L; Wang D Opt Express; 2008 Feb; 16(4):2784-90. PubMed ID: 18542362 [TBL] [Abstract][Full Text] [Related]
14. Hybrid photonic bandgap effect in twisted hollow-core photonic bandgap fibers. Zhu Y; Li W; Gao F; Xu X; Song N Opt Lett; 2022 Dec; 47(23):6161-6164. PubMed ID: 37219197 [TBL] [Abstract][Full Text] [Related]
15. High group birefringence in air-core photonic bandgap fibers. Alam MS; Saitoh K; Koshiba M Opt Lett; 2005 Apr; 30(8):824-6. PubMed ID: 15865367 [TBL] [Abstract][Full Text] [Related]
16. Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers. Murao T; Saitoh K; Koshiba M Opt Express; 2009 Apr; 17(9):7615-29. PubMed ID: 19399140 [TBL] [Abstract][Full Text] [Related]
17. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers. Kim HK; Digonnet M; Kino G; Shin J; Fan S Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869 [TBL] [Abstract][Full Text] [Related]
20. Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers. Skorobogatiy M; Saitoh K; Koshiba M Opt Express; 2008 Sep; 16(19):14945-53. PubMed ID: 18795031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]