These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18059794)

  • 21. Tunable gratings in a hollow-core photonic bandgap fiber based on acousto-optic interaction.
    Yeom DI; Park HC; Hwang IK; Kim BY
    Opt Express; 2009 Jun; 17(12):9933-9. PubMed ID: 19506643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect.
    Barkou SE; Broeng J; Bjarklev A
    Opt Lett; 1999 Jan; 24(1):46-8. PubMed ID: 18071403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boundary integral method for the challenging problems in bandgap guiding, plasmonics and sensing.
    Pone E; Hassani A; Lacroix S; Kabashin A; Skorobogatiy M
    Opt Express; 2007 Aug; 15(16):10231-46. PubMed ID: 19547372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers.
    Dangui V; Kim H; Digonnet M; Kino G
    Opt Express; 2005 Sep; 13(18):6669-84. PubMed ID: 19498684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Birefringent all-solid hybrid microstructured fiber.
    Goto R; Jackson SD; Fleming S; Kuhlmey BT; Eggleton BJ; Himeno K
    Opt Express; 2008 Nov; 16(23):18752-63. PubMed ID: 19581962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A vector boundary matching technique for efficient and accurate determination of photonic bandgaps in photonic bandgap fibers.
    Dong L
    Opt Express; 2011 Jun; 19(13):12582-93. PubMed ID: 21716499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers.
    Digonnet M; Kim H; Shin J; Fan S; Kino G
    Opt Express; 2004 May; 12(9):1864-72. PubMed ID: 19475017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unique loss characteristics in TE
    Kubota H; Kosake N; Miyoshi Y; Ohashi M
    Opt Lett; 2018 Jun; 43(11):2599-2602. PubMed ID: 29856439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of the mode reflection coefficient in air-core photonic bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2007 Apr; 15(9):5342-59. PubMed ID: 19532788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms.
    Saitoh K; Florous NJ; Murao T; Koshiba M
    Opt Express; 2006 Aug; 14(16):7342-52. PubMed ID: 19529103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2007 Dec; 15(26):17577-86. PubMed ID: 19551052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers.
    Jin L; Wang Z; Liu Y; Kai G; Dong X
    Opt Express; 2008 Dec; 16(25):21119-31. PubMed ID: 19065252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of periodicity on the defect modes of large mode area microstructured fibers.
    Flanagan JC; Amezcua R; Poletti F; Hayes JR; Broderick NG; Richardson DJ
    Opt Express; 2008 Nov; 16(23):18631-45. PubMed ID: 19581949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers.
    Noordegraaf D; Scolari L; Lægsgaard J; Rindorf L; Alkeskjold TT
    Opt Express; 2007 Jun; 15(13):7901-12. PubMed ID: 19547117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes.
    Perrin M; Quiquempois Y; Bouwmans G; Douay M
    Opt Express; 2007 Oct; 15(21):13783-95. PubMed ID: 19550649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers.
    Fokoua EN; Poletti F; Richardson DJ
    Opt Express; 2012 Sep; 20(19):20980-91. PubMed ID: 23037221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique.
    Hochman A; Leviatan Y
    J Opt Soc Am A Opt Image Sci Vis; 2004 Jun; 21(6):1073-81. PubMed ID: 15191190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic control of higher-order modes in hollow-core photonic crystal fibers.
    Euser TG; Whyte G; Scharrer M; Chen JS; Abdolvand A; Nold J; Kaminski CF; Russell PS
    Opt Express; 2008 Oct; 16(22):17972-81. PubMed ID: 18958077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of realistic cladding structures for air-core photonic bandgap fibers.
    Mortensen NA; Nielsen MD
    Opt Lett; 2004 Feb; 29(4):349-51. PubMed ID: 14971749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers.
    Poletti F; Broderick NG; Richardson D; Monro T
    Opt Express; 2005 Oct; 13(22):9115-24. PubMed ID: 19498947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.