These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 18059925)

  • 1. Quantitative temporal speckle contrast imaging for tissue mechanics.
    Kirkpatrick SJ; Duncan DD; Wang RK; Hinds MT
    J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3728-34. PubMed ID: 18059925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On feature motion decorrelation in ultrasound speckle tracking.
    Liang T; Yung L; Yu W
    IEEE Trans Med Imaging; 2013 Feb; 32(2):435-48. PubMed ID: 23204278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mechanical contrast in optical coherence elastography.
    Kennedy KM; Ford C; Kennedy BF; Bush MB; Sampson DD
    J Biomed Opt; 2013 Dec; 18(12):121508. PubMed ID: 24220762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography.
    Zaitsev VY; Matveyev AL; Matveev LA; Gelikonov GV; Gelikonov VM; Vitkin A
    J Biomed Opt; 2015 Jul; 20(7):75006. PubMed ID: 26172612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two improved algorithms with which to obtain contoured windows for fringe patterns generated by electronic speckle-pattern interferometry.
    Yu Q; Yang X; Fu S; Sun X
    Appl Opt; 2005 Nov; 44(33):7050-4. PubMed ID: 16318173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue stiffness imaging method using temporal variation of ultrasound speckle pattern.
    Jeong MK; Kwon SJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Apr; 50(4):457-60. PubMed ID: 12744402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speckle reduction in optical coherence tomography images using digital filtering.
    Ozcan A; Bilenca A; Desjardins AE; Bouma BE; Tearney GJ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1901-10. PubMed ID: 17728812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation.
    Song S; Huang Z; Wang RK
    J Biomed Opt; 2013 Dec; 18(12):121505. PubMed ID: 24150274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability.
    Zaitsev VY; Matveev LA; Matveyev AL; Gelikonov GV; Gelikonov VM
    J Biomed Opt; 2014 Feb; 19(2):21107. PubMed ID: 24042446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue.
    Wu D; Tao C; Liu X
    Opt Express; 2013 Jul; 21(15):18061-7. PubMed ID: 23938677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized motion estimation for MRE data with reduced motion encodes.
    Wang H; Weaver JB; Doyley MM; Kennedy FE; Paulsen KD
    Phys Med Biol; 2008 Apr; 53(8):2181-96. PubMed ID: 18385527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Island analysis of low-activity dynamic speckles.
    Guzmán MN; Hernán Sendra G; Rabal HJ; Trivi M
    Appl Opt; 2014 Jan; 53(1):14-21. PubMed ID: 24513983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear wave arrival time estimates correlate with local speckle pattern.
    Mcaleavey SA; Osapoetra LO; Langdon J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2054-67. PubMed ID: 26670847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares.
    Zhou Z; Liu W; Cui J; Wang X; Arias D; Wen Y; Bansal R; Hao X; Wang Z; Peterson BS; Xu D
    Magn Reson Imaging; 2011 Feb; 29(2):230-42. PubMed ID: 21129881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for modeling noise in medical images.
    Gravel P; Beaudoin G; De Guise JA
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1221-32. PubMed ID: 15493690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier-transform method of data compression and temporal fringe pattern analysis.
    Ng TW; Ang KT
    Appl Opt; 2005 Nov; 44(33):7043-9. PubMed ID: 16318172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.
    Choi HH; Lee JH; Kim SM; Park SY
    Biomed Mater Eng; 2015; 26 Suppl 1():S1587-97. PubMed ID: 26405924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Markov speckle for efficient random bit generation.
    Horstmeyer R; Chen RY; Judkewitz B; Yang C
    Opt Express; 2012 Nov; 20(24):26394-410. PubMed ID: 23187494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coupled subsample displacement estimation method for ultrasound-based strain elastography.
    Jiang J; Hall TJ
    Phys Med Biol; 2015 Nov; 60(21):8347-64. PubMed ID: 26458219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.