BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18060133)

  • 1. Single-walled carbon nanotubes binding to human telomeric i-motif DNA: significant acceleration of S1 nuclease cleavage rate.
    Peng Y; Li X; Ren J; Qu X
    Chem Commun (Camb); 2007 Dec; (48):5176-8. PubMed ID: 18060133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-walled carbon nanotubes binding to human telomeric i-motif DNA under molecular-crowding conditions: more water molecules released.
    Zhao C; Ren J; Qu X
    Chemistry; 2008; 14(18):5435-9. PubMed ID: 18478516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. i-Motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes.
    Peng Y; Wang X; Xiao Y; Feng L; Zhao C; Ren J; Qu X
    J Am Chem Soc; 2009 Sep; 131(38):13813-8. PubMed ID: 19736925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DNA nanomachine induced by single-walled carbon nanotubes on gold surface.
    Zhao C; Song Y; Ren J; Qu X
    Biomaterials; 2009 Mar; 30(9):1739-45. PubMed ID: 19124154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation.
    Li X; Peng Y; Ren J; Qu X
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19658-63. PubMed ID: 17167055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube-DNA hybrid used for activity monitoring and inhibitor screening of nuclease.
    Liu ZD; Hu PP; Zhao HX; Li YF; Huang CZ
    Anal Chim Acta; 2011 Nov; 706(1):171-5. PubMed ID: 21995925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S1 nuclease: immunoaffinity purification and evidence for the proximity of cysteine 25 to the substrate binding site.
    Gite S; Shankar V
    J Mol Recognit; 1995; 8(5):281-9. PubMed ID: 8619949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clipping of predetermined fragments from the human genome by S1 nuclease-PNA combinations.
    Li X; Muneoka S; Shigi N; Sumaoka J; Komiyama M
    Chem Commun (Camb); 2014 Aug; 50(63):8674-6. PubMed ID: 24958630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA.
    Dukovic G; Balaz M; Doak P; Berova ND; Zheng M; McLean RS; Brus LE
    J Am Chem Soc; 2006 Jul; 128(28):9004-5. PubMed ID: 16834352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled precipitation of solubilized carbon nanotubes by delamination of DNA.
    Chen RJ; Zhang Y
    J Phys Chem B; 2006 Jan; 110(1):54-7. PubMed ID: 16471498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.
    Yang QH; Wang Q; Gale N; Oton CJ; Cui L; Nandhakumar IS; Zhu Z; Tang Z; Brown T; Loh WH
    Nanotechnology; 2009 May; 20(19):195603. PubMed ID: 19420642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unexpected new optimum in the structure space of DNA solubilizing single-walled carbon nanotubes.
    Vogel SR; Kappes MM; Hennrich F; Richert C
    Chemistry; 2007; 13(6):1815-20. PubMed ID: 17133636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes.
    Rajendra J; Baxendale M; Dit Rap LG; Rodger A
    J Am Chem Soc; 2004 Sep; 126(36):11182-8. PubMed ID: 15355099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent functionalization of DNA-wrapped single-walled carbon nanotubes with platinum-based DNA cross-linkers.
    Ostojic GN; Ireland JR; Hersam MC
    Langmuir; 2008 Sep; 24(17):9784-9. PubMed ID: 18646876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites.
    Ma Y; Chiu PL; Serrano A; Ali SR; Chen AM; He H
    J Am Chem Soc; 2008 Jun; 130(25):7921-8. PubMed ID: 18517209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the (n,m) concentration distribution of single-walled carbon nanotubes from photoabsorption spectra.
    Nair N; Usrey ML; Kim WJ; Braatz RD; Strano MS
    Anal Chem; 2006 Nov; 78(22):7689-96. PubMed ID: 17105160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of trace Hg2+ via induced circular dichroism of DNA wrapped around single-walled carbon nanotubes.
    Gao X; Xing G; Yang Y; Shi X; Liu R; Chu W; Jing L; Zhao F; Ye C; Yuan H; Fang X; Wang C; Zhao Y
    J Am Chem Soc; 2008 Jul; 130(29):9190-1. PubMed ID: 18576620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Human Telomeric i-Motif DNA with Single-Walled Carbon Nanotubes: Insights from Molecular Dynamics Simulations.
    Wolski P; Wojton P; Nieszporek K; Panczyk T
    J Phys Chem B; 2019 Dec; 123(49):10343-10353. PubMed ID: 31735024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-walled carbon nanotube binding peptides: probing tryptophan's importance by unnatural amino acid substitution.
    Su Z; Mui K; Daub E; Leung T; Honek J
    J Phys Chem B; 2007 Dec; 111(51):14411-7. PubMed ID: 18062679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres.
    Chen Y; Qu K; Zhao C; Wu L; Ren J; Wang J; Qu X
    Nat Commun; 2012; 3():1074. PubMed ID: 23011128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.