These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18060505)

  • 1. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.
    Schroeter TS; Schwaighofer A; Mika S; Ter Laak A; Suelzle D; Ganzer U; Heinrich N; Müller KR
    J Comput Aided Mol Des; 2007 Dec; 21(12):651-64. PubMed ID: 18060505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.
    Schroeter TS; Schwaighofer A; Mika S; Ter Laak A; Suelzle D; Ganzer U; Heinrich N; Müller KR
    J Comput Aided Mol Des; 2007 Sep; 21(9):485-98. PubMed ID: 17632688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning models for lipophilicity and their domain of applicability.
    Schroeter T; Schwaighofer A; Mika S; Laak AT; Suelzle D; Ganzer U; Heinrich N; Müller KR
    Mol Pharm; 2007; 4(4):524-38. PubMed ID: 17637064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models.
    Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y
    ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random forest models to predict aqueous solubility.
    Palmer DS; O'Boyle NM; Glen RC; Mitchell JB
    J Chem Inf Model; 2007; 47(1):150-8. PubMed ID: 17238260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaussian processes for classification: QSAR modeling of ADMET and target activity.
    Obrezanova O; Segall MD
    J Chem Inf Model; 2010 Jun; 50(6):1053-61. PubMed ID: 20433177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comments on prediction of the aqueous solubility using the general solubility equation (GSE) versus a genetic algorithm and a support vector machine model.
    Alantary D; Yalkowsky S
    Pharm Dev Technol; 2018 Sep; 23(7):739-740. PubMed ID: 28425310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of aqueous solubility: a multimodel protocol based on chemical similarity.
    Chevillard F; Lagorce D; Reynès C; Villoutreix BO; Vayer P; Miteva MA
    Mol Pharm; 2012 Nov; 9(11):3127-35. PubMed ID: 23072744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaussian processes: a method for automatic QSAR modeling of ADME properties.
    Obrezanova O; Csanyi G; Gola JM; Segall MD
    J Chem Inf Model; 2007; 47(5):1847-57. PubMed ID: 17602549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR-based solubility model for drug-like compounds.
    Gozalbes R; Pineda-Lucena A
    Bioorg Med Chem; 2010 Oct; 18(19):7078-84. PubMed ID: 20810286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules.
    McDonagh JL; Nath N; De Ferrari L; van Mourik T; Mitchell JB
    J Chem Inf Model; 2014 Mar; 54(3):844-56. PubMed ID: 24564264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of machine learning and nonlinear statistical tools for ADME prediction.
    Sakiyama Y
    Expert Opin Drug Metab Toxicol; 2009 Feb; 5(2):149-69. PubMed ID: 19239395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning techniques and drug design.
    Gertrudes JC; Maltarollo VG; Silva RA; Oliveira PR; Honório KM; da Silva AB
    Curr Med Chem; 2012; 19(25):4289-97. PubMed ID: 22830342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust QSAR prediction models for volume of distribution at steady state in humans using relative distance measurements.
    Luque Ruiz I; Gómez-Nieto MÁ
    SAR QSAR Environ Res; 2018 Jul; 29(7):529-550. PubMed ID: 30044137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of mutual information, genetic algorithm and SVR for feature selection in QSAR regression.
    Fang J; Tai D
    Curr Drug Discov Technol; 2011 Jun; 8(2):107-11. PubMed ID: 21513488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New QSPR study for the prediction of aqueous solubility of drug-like compounds.
    Duchowicz PR; Talevi A; Bruno-Blanch LE; Castro EA
    Bioorg Med Chem; 2008 Sep; 16(17):7944-55. PubMed ID: 18701302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors.
    Klepsch F; Vasanthanathan P; Ecker GF
    J Chem Inf Model; 2014 Jan; 54(1):218-29. PubMed ID: 24050383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions.
    Zernov VV; Balakin KV; Ivaschenko AA; Savchuk NP; Pletnev IV
    J Chem Inf Comput Sci; 2003; 43(6):2048-56. PubMed ID: 14632457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.