These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18060525)

  • 1. Automated multidetector row CT dataset segmentation with an interactive watershed transform (IWT) algorithm: Part 1. Understanding the IWT technique.
    Heath DG; Hahn HK; Johnson PT; Fishman EK
    J Digit Imaging; 2008 Dec; 21(4):408-12. PubMed ID: 18060525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated multidetector row CT dataset segmentation with an interactive watershed transform (IWT) algorithm: Part 2. Body CT angiographic and orthopedic applications.
    Johnson PT; Hahn HK; Heath DG; Fishman EK
    J Digit Imaging; 2008 Dec; 21(4):413-21. PubMed ID: 18066625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation.
    Naumovich SS; Naumovich SA; Goncharenko VG
    Dentomaxillofac Radiol; 2015; 44(4):20140313. PubMed ID: 25564886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated bone editing algorithm for CT angiography: preliminary results.
    Fishman EK; Liang CC; Kuszyk BS; Davi SE; Heath DG; Hentschel D; Duffy SV; Gupta A
    AJR Am J Roentgenol; 1996 Mar; 166(3):669-72. PubMed ID: 8623647
    [No Abstract]   [Full Text] [Related]  

  • 5. Bone fragment segmentation from 3D CT imagery.
    Shadid WG; Willis A
    Comput Med Imaging Graph; 2018 Jun; 66():14-27. PubMed ID: 29510320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume rendering in clinical practice. a pictorial review.
    Salgado R; Mulkens T; Bellinck P; Termote JL
    JBR-BTR; 2003; 86(4):215-20. PubMed ID: 14527062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic bone segmentation technique for CT angiographic studies.
    Fiebich M; Straus CM; Sehgal V; Renger BC; Doi K; Hoffmann KR
    J Comput Assist Tomogr; 1999; 23(1):155-61. PubMed ID: 10050827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of body-torso-wide tissue composition on low-dose CT images via automatic anatomy recognition.
    Liu T; Udupa JK; Miao Q; Tong Y; Torigian DA
    Med Phys; 2019 Mar; 46(3):1272-1285. PubMed ID: 30614020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI.
    Marshall HR; Patrick J; Laidley D; Prato FS; Butler J; Théberge J; Thompson RT; Stodilka RZ
    Med Phys; 2013 Aug; 40(8):082509. PubMed ID: 23927354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive liver tumor segmentation from ct scans using support vector classification with watershed.
    Zhang X; Tian J; Xiang D; Li X; Deng K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6005-8. PubMed ID: 22255708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CT angiography: basic principles and post-processing applications.
    Salgado R; Mulkens T; Ozsarlak O; De Schepper AM; Parizel PA
    JBR-BTR; 2003; 86(6):336-40. PubMed ID: 14748397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions.
    Rathnayaka K; Sahama T; Schuetz MA; Schmutz B
    Med Eng Phys; 2011 Mar; 33(2):226-33. PubMed ID: 21030288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CT-ORG, a new dataset for multiple organ segmentation in computed tomography.
    Rister B; Yi D; Shivakumar K; Nobashi T; Rubin DL
    Sci Data; 2020 Nov; 7(1):381. PubMed ID: 33177518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time volume rendering visualization of dual-modality PET/CT images with interactive fuzzy thresholding segmentation.
    Kim J; Cai W; Eberl S; Feng D
    IEEE Trans Inf Technol Biomed; 2007 Mar; 11(2):161-9. PubMed ID: 17390986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data.
    Kang Y; Engelke K; Kalender WA
    IEEE Trans Med Imaging; 2003 May; 22(5):586-98. PubMed ID: 12846428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast segmentation of bone in CT images using 3D adaptive thresholding.
    Zhang J; Yan CH; Chui CK; Ong SH
    Comput Biol Med; 2010 Feb; 40(2):231-6. PubMed ID: 20053396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study.
    Pandey P; Guy P; Hodgson AJ; Abugharbieh R
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1515-1524. PubMed ID: 29804181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated volumetry of pulmonary nodules on multidetector CT: influence of slice thickness, reconstruction algorithm and tube current. Preliminary results.
    Larici AR; Storto ML; Torge M; Mereu M; Molinari F; Maggi F; Bonomo L
    Radiol Med; 2008 Feb; 113(1):29-42. PubMed ID: 18338125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Energy CT and Virtual Low-Energy Reconstruction for 3D Visualization of Thin Bone.
    Abramson Z; Burton C; Goode C; Sheyn A
    AJR Am J Roentgenol; 2022 Feb; 218(2):376. PubMed ID: 34467783
    [No Abstract]   [Full Text] [Related]  

  • 20. Efficient lower-limb segmentation for large-scale volumetric CT by using projection view and voxel group attention.
    Chen F; Xie Y; Xu P; Zhao Z; Zhang D; Liao H
    Med Biol Eng Comput; 2022 Aug; 60(8):2201-2216. PubMed ID: 35666368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.