These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18060691)

  • 1. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process.
    Lai YC; Lee WJ; Huang KL; Wu CM
    J Hazard Mater; 2008 Jun; 154(1-3):588-94. PubMed ID: 18060691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
    Kim HI; Park KH; Mishra D
    J Hazard Mater; 2009 Jul; 166(2-3):1540-4. PubMed ID: 19121897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of tetrabromobisphenol A (TBBPA) reactions with H₂SO₄, HNO₃ and HCl: implication for hydrometallurgy of electronic wastes.
    Zhong Y; Li D; Mao Z; Huang W; Peng P; Chen P; Mei J
    J Hazard Mater; 2014 Apr; 270():196-201. PubMed ID: 24594840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    J Hazard Mater; 2008 Apr; 152(3):1082-91. PubMed ID: 17825485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272.
    Park KH; Mohapatra D; Nam CW
    J Hazard Mater; 2007 Sep; 148(1-2):287-95. PubMed ID: 17363155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of metal values from manganese nodules in the ocean environment using zinc matte as a reductant.
    Kuh SE; Kim JW; Kim DS; Choi KS
    Environ Technol; 2001 Aug; 22(8):881-7. PubMed ID: 11561945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium.
    Valverde IM; Paulino JF; Afonso JC
    J Hazard Mater; 2008 Dec; 160(2-3):310-7. PubMed ID: 18400377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning.
    Vegliò F; Quaresima R; Fornari P; Ubaldini S
    Waste Manag; 2003; 23(3):245-52. PubMed ID: 12737966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.
    De Michelis I; Ferella F; Varelli EF; Vegliò F
    Waste Manag; 2011 Dec; 31(12):2559-68. PubMed ID: 21840197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.
    Baba AA; Adekola AF; Bale RB
    J Hazard Mater; 2009 Nov; 171(1-3):838-44. PubMed ID: 19596514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emissions of polycyclic aromatic hydrocarbons from thermal pre-treatment of waste hydrodesulfurization catalysts.
    Lai YC; Lee WJ; Huang KL; Huang HH
    Chemosphere; 2007 Sep; 69(2):200-8. PubMed ID: 17531290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method.
    Park KH; Mohapatra D; Reddy BR
    J Hazard Mater; 2006 Nov; 138(2):311-6. PubMed ID: 16860466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of platinum from spent catalysts by liquid-liquid extraction in chloride medium.
    Marinho RS; Afonso JC; da Cunha JW
    J Hazard Mater; 2010 Jul; 179(1-3):488-94. PubMed ID: 20363560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the diffusion dialysis performance by surface cross-linking of PPO anion exchange membranes--simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration.
    Tongwen X; Weihua Y
    J Hazard Mater; 2004 Jun; 109(1-3):157-64. PubMed ID: 15177755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.
    Lee JY; Rao SV; Kumar BN; Kang DJ; Reddy BR
    J Hazard Mater; 2010 Apr; 176(1-3):1122-5. PubMed ID: 20018448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.
    Vemic M; Bordas F; Guibaud G; Comte S; Joussein E; Lens PN; Van Hullebusch ED
    Environ Technol; 2016; 37(5):630-9. PubMed ID: 26369315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.