These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1806101)

  • 1. Theory of asynchronous oscillations in loaded insect flight muscle.
    Sicilia S; Smith DA
    Math Biosci; 1991 Oct; 106(2):159-201. PubMed ID: 1806101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative model for Schädler's isometric oscillations in insect flight and cardiac muscle.
    Smith DA
    J Muscle Res Cell Motil; 1991 Oct; 12(5):455-65. PubMed ID: 1939609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal.
    Granzier HL; Wang K
    J Gen Physiol; 1993 Feb; 101(2):235-70. PubMed ID: 7681097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-state model for oscillation in muscle: sinusoidal analysis.
    Murase M; Tanaka H; Nishiyama K; Shimizu H
    J Muscle Res Cell Motil; 1986 Feb; 7(1):2-10. PubMed ID: 3958157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The theory of sliding filament models for muscle contraction. III. Dynamics of the five-state model.
    Smith DA
    J Theor Biol; 1990 Oct; 146(4):433-66. PubMed ID: 2273895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of fibre length and calcium ion concentration on the dynamic response of glycerol extracted insect fibrillar muscle.
    Abbott RH
    J Physiol; 1973 Jun; 231(2):195-208. PubMed ID: 4720933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit striated muscle.
    Thorson J; White DC
    J Physiol; 1983 Oct; 343():59-84. PubMed ID: 6685767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster.
    Peckham M; Molloy JE; Sparrow JC; White DC
    J Muscle Res Cell Motil; 1990 Jun; 11(3):203-15. PubMed ID: 2119393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle.
    White DC; Thorson J
    J Gen Physiol; 1972 Sep; 60(3):307-36. PubMed ID: 5055791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship of adenosine triphosphatase activity to tension and power output of insect flight muscle.
    Pybus J; Tregear RT
    J Physiol; 1975 May; 247(1):71-89. PubMed ID: 166167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experiments on rigor crossbridge action and filament sliding in insect flight muscle.
    Reedy MK; Lucaveche C; Reedy MC; Somasundaram B
    Adv Exp Med Biol; 1993; 332():33-44; discussion 44-6. PubMed ID: 8109347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation between mechanical performance and the cost of isometric tension maintenance in Lethocerus flight muscle.
    Loxdale HD; Tregear RT
    J Muscle Res Cell Motil; 1985 Apr; 6(2):163-75. PubMed ID: 4031048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretch activation and nonlinear elasticity of muscle cross-bridges.
    Thomas N; Thornhill RA
    Biophys J; 1996 Jun; 70(6):2807-18. PubMed ID: 8744318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments.
    Granzier HL; Wang K
    Biophys J; 1993 Nov; 65(5):2141-59. PubMed ID: 8298040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of calcium in the regulation of mechanical power in insect flight.
    Gordon S; Dickinson MH
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4311-5. PubMed ID: 16537527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spatially explicit model of muscle contraction explains a relationship between activation phase, power and ATP utilization in insect flight.
    Tanner BC; Regnier M; Daniel TL
    J Exp Biol; 2008 Jan; 211(Pt 2):180-6. PubMed ID: 18165245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative splicing, muscle calcium sensitivity, and the modulation of dragonfly flight performance.
    Marden JH; Fitzhugh GH; Wolf MR; Arnold KD; Rowan B
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):15304-9. PubMed ID: 10611380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.
    Marden JH
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1077-84. PubMed ID: 8184949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle.
    Yamakawa M; Goldman YE
    J Gen Physiol; 1991 Oct; 98(4):657-79. PubMed ID: 1960528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power output from a flight muscle of the bumblebee Bombus terrestris. II. Characterization of the parameters affecting power output.
    Josephson R
    J Exp Biol; 1997; 200(Pt 8):1227-39. PubMed ID: 9319078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.