BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1806109)

  • 1. Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method.
    Ultman JS; Piantadosi CA
    Math Biosci; 1991 Nov; 107(1):73-82. PubMed ID: 1806109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy.
    Duncan A; Meek JH; Clemence M; Elwell CE; Fallon P; Tyszczuk L; Cope M; Delpy DT
    Pediatr Res; 1996 May; 39(5):889-94. PubMed ID: 8726247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential pathlength factor in continuous wave functional near-infrared spectroscopy: reducing hemoglobin's cross talk in high-density recordings.
    Chiarelli AM; Perpetuini D; Filippini C; Cardone D; Merla A
    Neurophotonics; 2019 Jul; 6(3):035005. PubMed ID: 31423455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium.
    Piao D; Barbour RL; Graber HL; Lee DC
    J Biomed Opt; 2015 Oct; 20(10):105005. PubMed ID: 26465613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing.
    van der Zee P; Cope M; Arridge SR; Essenpreis M; Potter LA; Edwards AD; Wyatt JS; McCormick DC; Roth SC; Reynolds EO
    Adv Exp Med Biol; 1992; 316():143-53. PubMed ID: 1288074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photon path distribution and optical responses of turbid media: theoretical analysis based on the microscopic Beer-Lambert law.
    Tsuchiya Y
    Phys Med Biol; 2001 Aug; 46(8):2067-84. PubMed ID: 11512611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of the point spread function for light in tissue by a Monte Carlo method.
    Van der Zee P; Delpy DT
    Adv Exp Med Biol; 1987; 215():179-91. PubMed ID: 3673719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photon pathlength determination based on spatially resolved diffuse reflectance.
    Nilsson H; Larsson M; Nilsson GE; Strömberg T
    J Biomed Opt; 2002 Jul; 7(3):478-85. PubMed ID: 12175300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model.
    Chatterjee S; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3279-82. PubMed ID: 26736992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green functions for diffuse photon-density waves generated by a line source in two nonabsorbing turbid media in contact.
    Shendeleva ML
    Appl Opt; 2004 Mar; 43(8):1638-42. PubMed ID: 15046165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical solution of inverse scattering for near-field optics.
    Bao G; Li P
    Opt Lett; 2007 Jun; 32(11):1465-7. PubMed ID: 17546156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared optical imaging of tissue phantoms with measurement in the change of optical path lengths.
    Sevick EM; Burch CL; Chance B
    Adv Exp Med Biol; 1994; 345():815-23. PubMed ID: 8079791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incoherent subharmonic light scattering in isotropic media.
    Feng DH; Xu ZZ; Feng XL; Jia TQ; Li XX; Liu JS
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):575-8. PubMed ID: 15649786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near infrared spectroscopy in large animals: optical pathlength and influence of hair covering and epidermal pigmentation.
    Pringle J; Roberts C; Kohl M; Lekeux P
    Vet J; 1999 Jul; 158(1):48-52. PubMed ID: 10409416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media.
    Hayakawa CK; Hill BY; You JS; Bevilacqua F; Spanier J; Venugopalan V
    Appl Opt; 2004 Aug; 43(24):4677-84. PubMed ID: 15352392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The finite-element method for the propagation of light in scattering media: frequency domain case.
    Schweiger M; Arridge SR
    Med Phys; 1997 Jun; 24(6):895-902. PubMed ID: 9198025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin plus myoglobin concentrations and near infrared light pathlength in phantom and pig hearts determined by diffuse reflectance spectroscopy.
    Gussakovsky E; Jilkina O; Yang Y; Kupriyanov V
    Anal Biochem; 2008 Nov; 382(2):107-15. PubMed ID: 18713616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain.
    van der Zee P; Arridge SR; Cope M; Delpy DT
    Adv Exp Med Biol; 1990; 277():79-84. PubMed ID: 2096679
    [No Abstract]   [Full Text] [Related]  

  • 19. Method for broadband spectroscopy of light transport through opaque scattering media.
    Muskens OL; Lagendijk A
    Opt Lett; 2009 Feb; 34(4):395-7. PubMed ID: 19373319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photon beam dosimetry at a blocked beam edge using diffusion approximation.
    Das IJ; Kase KR; Kelley JE; Werner BL
    Phys Med Biol; 1992 Apr; 37(4):937-46. PubMed ID: 11419479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.