These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1806114)

  • 1. Assessing the variability of stochastic epidemics.
    Isham V
    Math Biosci; 1991 Dec; 107(2):209-24. PubMed ID: 1806114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-sample analysis for a stochastic epidemic model and its parameter estimators.
    Fierro R
    J Math Biol; 1996; 34(8):843-56. PubMed ID: 8858853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic epidemics: the expected duration of the endemic period in higher dimensional models.
    Grasman J
    Math Biosci; 1998 Aug; 152(1):13-27. PubMed ID: 9727295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the Kalman filter and dynamic models to assess the changing HIV/AIDS epidemic.
    Cazelles B; Chau NP
    Math Biosci; 1997 Mar; 140(2):131-54. PubMed ID: 9046772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stochastic model of the HIV epidemic and the HIV infection distribution in a homosexual population.
    Tan WY; Byers RH
    Math Biosci; 1993 Jan; 113(1):115-43. PubMed ID: 8431645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computer exploration of some properties of non-linear stochastic partnership models for sexually transmitted diseases with stages.
    Sleeman CK; Mode CJ
    Math Biosci; 1999 Mar; 156(1-2):123-45. PubMed ID: 10204390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stochastic mover/stayer model for an HIV epidemic.
    Rossi C
    Math Biosci; 1991 Dec; 107(2):521-45. PubMed ID: 1806130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-stage stochastic epidemic model: an application to AIDS.
    Billard L; Zhao Z
    Math Biosci; 1991 Dec; 107(2):431-49. PubMed ID: 1806127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probability of a disease outbreak in stochastic multipatch epidemic models.
    Lahodny GE; Allen LJ
    Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Country-specific estimates and models of HIV and AIDS: methods and limitations.
    Schwartländer B; Stanecki KA; Brown T; Way PO; Monasch R; Chin J; Tarantola D; Walker N
    AIDS; 1999 Dec; 13(17):2445-58. PubMed ID: 10597787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of clumped population structure on the variability of spreading dynamics.
    Black AJ; House T; Keeling MJ; Ross JV
    J Theor Biol; 2014 Oct; 359():45-53. PubMed ID: 24911778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scaling analysis of measles epidemics in a small population.
    Rhodes CJ; Anderson RM
    Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Markov chain models of S-I-R disease dynamics.
    Rebuli NP; Bean NG; Ross JV
    J Math Biol; 2017 Sep; 75(3):521-541. PubMed ID: 28013336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Branching process approach for epidemics in dynamic partnership network.
    Lashari AA; Trapman P
    J Math Biol; 2018 Jan; 76(1-2):265-294. PubMed ID: 28573467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian process approximations for fast inference from infectious disease data.
    Buckingham-Jeffery E; Isham V; House T
    Math Biosci; 2018 Jul; 301():111-120. PubMed ID: 29471011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stochastic general epidemic model revisited and a generalization.
    Billard L; Zhao Z
    IMA J Math Appl Med Biol; 1993; 10(1):67-75. PubMed ID: 8409626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the simultaneous distribution of size and costs of an epidemic in a closed multigroup population.
    Svensson A
    Math Biosci; 1995 Jun; 127(2):167-80. PubMed ID: 7795317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of HIV infection and seroconversion by a stochastic model of the HIV epidemic.
    Tan WY; Lee SR; Tang SC
    Math Biosci; 1995 Mar; 126(1):81-123. PubMed ID: 7696819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever.
    Howard SC; Donnelly CA
    J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic population epidemic models.
    Ball FG
    Math Biosci; 1991 Dec; 107(2):299-324. PubMed ID: 1806120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.