These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18061205)

  • 21. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2.
    Aitha M; Marts AR; Bergstrom A; Møller AJ; Moritz L; Turner L; Nix JC; Bonomo RA; Page RC; Tierney DL; Crowder MW
    Biochemistry; 2014 Nov; 53(46):7321-31. PubMed ID: 25356958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Single Salt Bridge in VIM-20 Increases Protein Stability and Antibiotic Resistance under Low-Zinc Conditions.
    Cheng Z; Shurina BA; Bethel CR; Thomas PW; Marshall SH; Thomas CA; Yang K; Kimble RL; Montgomery JS; Orischak MG; Miller CM; Tennenbaum JL; Nix JC; Tierney DL; Fast W; Bonomo RA; Page RC; Crowder MW
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors.
    Schnaars C; Kildahl-Andersen G; Prandina A; Popal R; Radix S; Le Borgne M; Gjøen T; Andresen AMS; Heikal A; Økstad OA; Fröhlich C; Samuelsen Ø; Lauksund S; Jordheim LP; Rongved P; Åstrand OAH
    ACS Infect Dis; 2018 Sep; 4(9):1407-1422. PubMed ID: 30022668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases .
    González JM; Buschiazzo A; Vila AJ
    Biochemistry; 2010 Sep; 49(36):7930-8. PubMed ID: 20677753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emergence and persistence of integron structures harbouring VIM genes in the Children's Memorial Health Institute, Warsaw, Poland, 1998-2006.
    Patzer JA; Walsh TR; Weeks J; Dzierzanowska D; Toleman MA
    J Antimicrob Chemother; 2009 Feb; 63(2):269-73. PubMed ID: 19095681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of imipenem resistance in metallo-β-lactamases expressing pathogenic bacterial spp. and identification of potential inhibitors: An in silico approach.
    Malathi K; Ramaiah S
    J Cell Biochem; 2019 Jan; 120(1):584-591. PubMed ID: 30125985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical characterization of metallo-beta-lactamase VIM-11 from a Pseudomonas aeruginosa clinical strain.
    Marchiaro P; Tomatis PE; Mussi MA; Pasteran F; Viale AM; Limansky AS; Vila AJ
    Antimicrob Agents Chemother; 2008 Jun; 52(6):2250-2. PubMed ID: 18362187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures of Pseudomonas aeruginosa GIM-1: active-site plasticity in metallo-β-lactamases.
    Borra PS; Samuelsen Ø; Spencer J; Walsh TR; Lorentzen MS; Leiros HK
    Antimicrob Agents Chemother; 2013 Feb; 57(2):848-54. PubMed ID: 23208706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic, Thermodynamic, and Crystallographic Studies of 2-Triazolylthioacetamides as Verona Integron-Encoded Metallo-β-Lactamase 2 (VIM-2) Inhibitor.
    Xiang Y; Zhang YJ; Ge Y; Zhou Y; Chen C; Wahlgren WY; Tan X; Chen X; Yang KW
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31906402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. VIM-2 beta-lactamase in Pseudomonas aeruginosa isolates from Zagreb, Croatia.
    Bosnjak Z; Bedenić B; Mazzariol A; Jarza-Davila N; Suto S; Kalenić S
    Scand J Infect Dis; 2010 Mar; 42(3):193-7. PubMed ID: 20001226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into class D beta-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa.
    Maveyraud L; Golemi D; Kotra LP; Tranier S; Vakulenko S; Mobashery S; Samama JP
    Structure; 2000 Dec; 8(12):1289-98. PubMed ID: 11188693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa.
    Kazmierczak KM; Rabine S; Hackel M; McLaughlin RE; Biedenbach DJ; Bouchillon SK; Sahm DF; Bradford PA
    Antimicrob Agents Chemother; 2016 Feb; 60(2):1067-78. PubMed ID: 26643349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles.
    Makena A; Düzgün AÖ; Brem J; McDonough MA; Rydzik AM; Abboud MI; Saral A; Çiçek AÇ; Sandalli C; Schofield CJ
    Antimicrob Agents Chemother; 2015 Dec; 60(3):1377-84. PubMed ID: 26666919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular evolution of metallo-beta-lactamase-producing Pseudomonas aeruginosa in a nosocomial setting of high-level endemicity.
    Lagatolla C; Edalucci E; Dolzani L; Riccio ML; De Luca F; Medessi E; Rossolini GM; Tonin EA
    J Clin Microbiol; 2006 Jul; 44(7):2348-53. PubMed ID: 16825348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification and characterization of a new β-lactamase OXA-205 from Pseudomonas aeruginosa.
    Krasauskas R; Labeikytė D; Markuckas A; Povilonis J; Armalytė J; Plančiūnienė R; Kavaliauskas P; Sužiedėlienė E
    Ann Clin Microbiol Antimicrob; 2015 Nov; 14():52. PubMed ID: 26611758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure and kinetic analysis of the class B3 di-zinc metallo-β-lactamase LRA-12 from an Alaskan soil metagenome.
    Rodríguez MM; Herman R; Ghiglione B; Kerff F; D'Amico González G; Bouillenne F; Galleni M; Handelsman J; Charlier P; Gutkind G; Sauvage E; Power P
    PLoS One; 2017; 12(7):e0182043. PubMed ID: 28750094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Molecular characterization of Pseudomonas aeruginosa isolates in Cantabria, Spain, producing VIM-2 metallo-beta-lactamase].
    Rodríguez MC; Ruiz del Castillo B; Rodríguez-Mirones C; Romo M; Monteagudo I; Martínez-Martínez L
    Enferm Infecc Microbiol Clin; 2010 Feb; 28(2):99-103. PubMed ID: 19409672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism.
    Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM
    Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical and structural characterization of the subclass B1 metallo-β-lactamase VIM-4.
    Lassaux P; Traoré DA; Loisel E; Favier A; Docquier JD; Sohier JS; Laurent C; Bebrone C; Frère JM; Ferrer JL; Galleni M
    Antimicrob Agents Chemother; 2011 Mar; 55(3):1248-55. PubMed ID: 21149620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.
    Amara AA; Rehm BH
    Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.