These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18061236)

  • 1. Catalytic effects by metal oxides on the formation and degradation of chlorinated aromatic compounds in fly ash.
    Oberg T; Bergbäck B; Filipsson M
    Chemosphere; 2008 Apr; 71(6):1135-43. PubMed ID: 18061236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash.
    Fujimori T; Takaoka M; Takeda N
    Environ Sci Technol; 2009 Nov; 43(21):8053-9. PubMed ID: 19924922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different catalytic effects by copper and chromium on the formation and degradation of chlorinated aromatic compounds in fly ash.
    Oberg T; Bergbäck B; Oberg E
    Environ Sci Technol; 2007 May; 41(10):3741-6. PubMed ID: 17547206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time gas-phase analysis of mono- to tri-chlorobenzenes generated from heated MSWI fly ashes containing various metal compounds: application of VUV-SPI-IT-TOFMS.
    Fujimori T; Takaoka M; Tsuruga S; Oshita K; Takeda N
    Environ Sci Technol; 2010 Jul; 44(14):5528-33. PubMed ID: 20550108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal catalyzed formation of chlorinated aromatic compounds: a study of the correlation pattern in incinerator fly ash.
    Oberg T; Ohrström T; Bergström J
    Chemosphere; 2007 Apr; 67(9):S185-90. PubMed ID: 17204302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of chlorinated aromatics in model fly ashes using various copper compounds.
    Takaoka M; Fujimori T; Shiono A; Yamamoto T; Takeda N; Oshita K; Uruga T; Sun Y; Tanaka T
    Chemosphere; 2010 Jun; 80(2):144-9. PubMed ID: 20452643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCDD/Fs formation catalyzed by the copper chloride in the fly ash.
    Chin YT; Lin C; Chang-Chien GP; Wang YM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):465-70. PubMed ID: 21409699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.
    Wang KS; Lin KL; Lee CH
    J Hazard Mater; 2009 Feb; 162(1):338-43. PubMed ID: 18573610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of copper speciation on the formation of chlorinated aromatics on real municipal solid waste incinerator fly ash.
    Takaoka M; Yamamoto T; Shiono A; Takeda N; Oshita K; Matsumoto T; Tanaka T
    Chemosphere; 2005 Jun; 59(10):1497-505. PubMed ID: 15876392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of MSWI fly ash melting characteristic by DSC-DTA.
    Li R; Wang L; Yang T; Raninger B
    Waste Manag; 2007; 27(10):1383-92. PubMed ID: 17346958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator.
    Jiang Y; Xi B; Li X; Zhang L; Wei Z
    J Hazard Mater; 2009 Jan; 161(2-3):871-7. PubMed ID: 18495335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of fly ash on catalytic removal of gaseous dioxins over V2O5-WO3 catalyst of a sinter plant.
    Chang SH; Chi KH; Young CW; Hong BZ; Chang MB
    Environ Sci Technol; 2009 Oct; 43(19):7523-30. PubMed ID: 19848171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between dynamic change of copper and dioxin generation in various fly ash.
    Takaoka M; Shiono A; Yamamoto T; Uruga T; Takeda N; Tanaka T; Oshita K; Matsumoto T; Harada H
    Chemosphere; 2008 Aug; 73(1 Suppl):S78-83. PubMed ID: 18442842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of microwave-assisted extraction to the analysis of PCBs and CBzs in fly ash from municipal solid waste incinerators.
    Sun Y; Takaoka M; Takeda N; Matsumoto T; Oshita K
    J Hazard Mater; 2006 Sep; 137(1):106-12. PubMed ID: 16713083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.
    Kuchar D; Fukuta T; Onyango MS; Matsuda H
    Chemosphere; 2007 Apr; 67(8):1518-25. PubMed ID: 17258281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-temperature formation and degradation of chlorinated benzenes, PCDD and PCDF in dust from steel production.
    Oberg T
    Sci Total Environ; 2007 Aug; 382(1):153-8. PubMed ID: 17451790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.
    Liu W; Hou H; Zhang C; Zhang D
    Waste Manag Res; 2009 May; 27(3):258-66. PubMed ID: 19423575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate.
    Gao X; Wang W; Ye T; Wang F; Lan Y
    J Environ Manage; 2008 Jul; 88(2):293-9. PubMed ID: 17466440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dechlorination/detoxification of aromatic chlorides using fly ash under mild conditions.
    Ghaffar A; Tabata M
    Waste Manag; 2009 Dec; 29(12):3004-8. PubMed ID: 19740644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of MSWI fly ash on acid soil and its effect on the environment.
    Wang T; Liu T; Sun C
    Waste Manag; 2008; 28(10):1977-82. PubMed ID: 17881210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.