These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18061243)

  • 1. Effect of biodegradable amendments on uranium solubility in contaminated soils.
    Duquène L; Tack F; Meers E; Baeten J; Wannijn J; Vandenhove H
    Sci Total Environ; 2008 Feb; 391(1):26-33. PubMed ID: 18061243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.
    Duquène L; Vandenhove H; Tack F; Meers E; Baeten J; Wannijn J
    Sci Total Environ; 2009 Feb; 407(5):1496-505. PubMed ID: 19054545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.
    Vandenhove H; Van Hees M; Wouters K; Wannijn J
    Environ Pollut; 2007 Jan; 145(2):587-95. PubMed ID: 16781802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient phytoextraction agents: establishing criteria for the use of chelants in phytoextraction of recalcitrant metals.
    Parra R; Ulery AL; Elless MP; Blaylock MJ
    Int J Phytoremediation; 2008; 10(5):415-29. PubMed ID: 19260223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction for clean-up of low-level uranium contaminated soil evaluated.
    Vandenhove H; Van Hees M
    J Environ Radioact; 2004; 72(1-2):41-5. PubMed ID: 15162854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments.
    Lozano JC; Blanco Rodríguez P; Tomé FV; Calvo CP
    J Hazard Mater; 2011 Dec; 198():224-31. PubMed ID: 22047721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical and mineralogical characterization of soil-saprolite cores from a field research site, Tennessee.
    Moon JW; Roh Y; Phelps TJ; Phillips DH; Watson DB; Kim YJ; Brooks SC
    J Environ Qual; 2006; 35(5):1731-41. PubMed ID: 16899744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of organic acids on the transport of heavy metals in soil.
    Schwab AP; Zhu DS; Banks MK
    Chemosphere; 2008 Jun; 72(6):986-94. PubMed ID: 18482743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of depleted uranium from contaminated soils.
    Choy CC; Korfiatis GP; Meng X
    J Hazard Mater; 2006 Aug; 136(1):53-60. PubMed ID: 16386369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.
    Duquène L; Vandenhove H; Tack F; Van Hees M; Wannijn J
    J Environ Radioact; 2010 Feb; 101(2):140-7. PubMed ID: 19822385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments.
    Knox AS; Brigmon RL; Kaplan DI; Paller MH
    Sci Total Environ; 2008 Jun; 395(2-3):63-71. PubMed ID: 18374392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.
    Vandenhove H; Van Hees M; Wannijn J; Wouters K; Wang L
    Environ Pollut; 2007 Jan; 145(2):577-86. PubMed ID: 16781804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uranium contents and (235)U/(238)U atom ratios in soil and earthworms in western Kosovo after the 1999 war.
    Di Lella LA; Nannoni F; Protano G; Riccobono F
    Sci Total Environ; 2005 Jan; 337(1-3):109-18. PubMed ID: 15626383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance.
    Wang X; Wang Y; Mahmood Q; Islam E; Jin X; Li T; Yang X; Liu D
    J Hazard Mater; 2009 Aug; 168(1):530-5. PubMed ID: 19303708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ uranium stabilization by microbial metabolites.
    Turick CE; Knox AS; Leverette CL; Kritzas YG
    J Environ Radioact; 2008 Jun; 99(6):890-9. PubMed ID: 18222573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation.
    Jagetiya B; Sharma A
    Chemosphere; 2013 Apr; 91(5):692-6. PubMed ID: 23267730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoextraction of uranium from contaminated soil by Macleaya cordata before and after application of EDDS and CA.
    Li CW; Hu N; Ding DX; Hu JS; Li GY; Wang YD
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6155-63. PubMed ID: 25399528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.
    Hashimoto Y; Taki T; Sato T
    J Environ Manage; 2009 Apr; 90(5):1782-9. PubMed ID: 19111967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioreduction of U(VI)-phthalate to a polymeric U(IV)-phthalate colloid.
    Vazquez GJ; Dodge CJ; Francis AJ
    Inorg Chem; 2009 Oct; 48(19):9485-90. PubMed ID: 19780622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata.
    Hu N; Lang T; Ding D; Hu J; Li C; Zhang H; Li G
    J Environ Radioact; 2019 Apr; 199-200():58-65. PubMed ID: 30685639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.