These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18061334)

  • 21. Formulation of a universal first-order rate constant for enzymatic reactions.
    Imoto T
    Biosci Biotechnol Biochem; 2013; 77(8):1703-8. PubMed ID: 23924733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociation kinetics of macrocyclic trivalent lanthanide complexes of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A).
    Lin CC; Chen CL; Liu KY; Chang CA
    Dalton Trans; 2011 Jun; 40(23):6268-77. PubMed ID: 21369608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of the hydrolysis of N-benzoyl-L-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses.
    Wharton CW; Cornish-Bowden A; Brocklehurst K; Crook EM
    Biochem J; 1974 Aug; 141(2):365-381. PubMed ID: 4455211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme.
    Adolph HW; Maurer P; Schneider-Bernlöhr H; Sartorius C; Zeppezauer M
    Eur J Biochem; 1991 Nov; 201(3):615-25. PubMed ID: 1935957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Change in heat capacity accurately predicts vibrational coupling in enzyme catalyzed reactions.
    Arcus VL; Pudney CR
    FEBS Lett; 2015 Aug; 589(17):2200-6. PubMed ID: 26172507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two rules of enzyme kinetics for reversible Michaelis-Menten mechanisms.
    Keleti T
    FEBS Lett; 1986 Nov; 208(1):109-12. PubMed ID: 3770204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic distinction between rapid-equilibrium random and abortive ordered enzymatic mechanisms using alternative substrates or kinetic isotope effects.
    Gates CA; Northrop DB
    Biochem Biophys Res Commun; 1988 Apr; 152(1):406-10. PubMed ID: 2833895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Stationary kinetics of catalysis by the hydrogenase of Thiocapsa roseopersicina].
    Varfolomeev SD; Gogotov IN; Toaĭ ChD; Bachurin SO
    Mol Biol (Mosk); 1978; 12(1):63-82. PubMed ID: 24804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants.
    Alberty RA
    Arch Biochem Biophys; 1998 May; 353(1):116-30. PubMed ID: 9578607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamics of the reactions of carbamoyl phosphate.
    Alberty RA
    Arch Biochem Biophys; 2006 Jul; 451(1):17-22. PubMed ID: 16684500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic mechanism of Escherichia coli isocitrate dehydrogenase.
    Dean AM; Koshland DE
    Biochemistry; 1993 Sep; 32(36):9302-9. PubMed ID: 8369299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Components and coupling in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2005 Feb; 109(5):2021-6. PubMed ID: 16851187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic mechanism of human histone acetyltransferase P/CAF.
    Tanner KG; Langer MR; Denu JM
    Biochemistry; 2000 Oct; 39(39):11961-9. PubMed ID: 11009610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of the dissociation constants of enzyme-substrate complexes from steady-state measurements. Interpretation of pH-independence of Km.
    Cornish-Bowden A
    Biochem J; 1976 Feb; 153(2):455-61. PubMed ID: 6011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy changes during the formation and interconversion of enzyme-substrate complexes.
    Gutfreund H; Trentham DR
    Ciba Found Symp; 1975; (31):69-86. PubMed ID: 125190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.
    Bakalis E; Kosmas M; Papamichael EM
    Bull Math Biol; 2012 Nov; 74(11):2535-46. PubMed ID: 22926529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pH-dependence of second-order rate constants of enzyme modification may provide free-reactant pKa values.
    Brocklehurst K; Dixon HB
    Biochem J; 1977 Dec; 167(3):859-62. PubMed ID: 23769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion.
    Richard JP; Westerfeld JG; Lin S; Beard J
    Biochemistry; 1995 Sep; 34(37):11713-24. PubMed ID: 7547903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen activation catalyzed by methane monooxygenase hydroxylase component: proton delivery during the O-O bond cleavage steps.
    Lee SK; Lipscomb JD
    Biochemistry; 1999 Apr; 38(14):4423-32. PubMed ID: 10194363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.