These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18062583)

  • 21. Magnesium transport in ferret red cells.
    Flatman PW; Smith LM
    J Physiol; 1990 Dec; 431():11-25. PubMed ID: 2100303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loading rat heart myocytes with Mg2+ using low-[Na+] solutions.
    Almulla HA; Bush PG; Steele MG; Ellis D; Flatman PW
    J Physiol; 2006 Sep; 575(Pt 2):443-54. PubMed ID: 16793904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Na+/Mg2+ antiport by simultaneous 28Mg2+ influx.
    Günther T; Vormann J
    Biochem Biophys Res Commun; 1987 Nov; 148(3):1069-74. PubMed ID: 3689385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of Mg2+ influx, efflux and intracellular 'muffling' in leech neurones and glial cells.
    Günzel D; Schlue WR
    Magnes Res; 2000 Jun; 13(2):123-38. PubMed ID: 10907230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular and extracellular concentrations of Na+ modulate Mg2+ transport in rat ventricular myocytes.
    Tashiro M; Tursun P; Konishi M
    Biophys J; 2005 Nov; 89(5):3235-47. PubMed ID: 16085772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Na+-dependent regulation of the free Mg2+ concentration in neuropile glial cells and P neurones of the leech Hirudo medicinalis.
    Hintz K; Günzel D; Schlue WR
    Pflugers Arch; 1999 Feb; 437(3):354-62. PubMed ID: 9914391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of intracellular magnesium in ascites cells: involvement of different regulatory pathways.
    Wolf FI; Di Francesco A; Covacci V; Corda D; Cittadini A
    Arch Biochem Biophys; 1996 Jul; 331(2):194-200. PubMed ID: 8660698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnesium transport in magnesium-loaded ferret red blood cells.
    Flatman PW; Smith LM
    Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression and functional activity of the Na/Mg exchanger, TRPM7 and MagT1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells.
    Schweigel M; Kolisek M; Nikolic Z; Kuzinski J
    Magnes Res; 2008 Jun; 21(2):118-23. PubMed ID: 18705540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. cAMP activates magnesium efflux via the Na/Mg antiporter in ascites cells.
    Wolf FI; Di Francesco A; Covacci V; Cittadini A
    Biochem Biophys Res Commun; 1994 Aug; 202(3):1209-14. PubMed ID: 8060294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Transport of Mg2+ by Na+-Mg2+ exchange].
    Konishi M
    Clin Calcium; 2004 Aug; 14(8):37-40. PubMed ID: 15577094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron transport into erythroid cells by the Na+/Mg2+ antiport.
    Stonell LM; Savigni DL; Morgan EH
    Biochim Biophys Acta; 1996 Jun; 1282(1):163-70. PubMed ID: 8679654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Species-specific Mn2+/Mg2+ antiport from Mg2(+)-loaded erythrocytes.
    Günther T; Vormann J; Cragoe EJ
    FEBS Lett; 1990 Feb; 261(1):47-51. PubMed ID: 1689673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Na+/Mg2+ transporter acts as a Mg2+ buffering mechanism in PC12 cells.
    Kubota T; Tokuno K; Nakagawa J; Kitamura Y; Ogawa H; Suzuki Y; Suzuki K; Oka K
    Biochem Biophys Res Commun; 2003 Mar; 303(1):332-6. PubMed ID: 12646207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of magnesium efflux from rat spleen lymphocytes.
    Wolf FI; Di Francesco A; Covacci V; Cittadini A
    Arch Biochem Biophys; 1997 Aug; 344(2):397-403. PubMed ID: 9264554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for simultaneous 1Na+:1Mg2+ and ping pong 2Na+:1Mg2+ exchangers in rat thymocyte.
    Contreras-Jurado C; Sanchez-Morito N; Ruiz-Contreras A; Gonzalez-Martinez MT; Soler-Diaz A
    Front Biosci; 2005 May; 10():1693-706. PubMed ID: 15769659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differentiation of HL-60 promyelocytic leukemia cells is accompanied by a modification of magnesium homeostasis.
    Wolf FI; Covacci V; Bruzzese N; Di Francesco A; Sacchetti A; Corda D; Cittadini A
    J Cell Biochem; 1998 Dec; 71(3):441-8. PubMed ID: 9831080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na+ gradient-dependent Mg2+ transport in smooth muscle cells of guinea pig tenia cecum.
    Tashiro M; Konishi M
    Biophys J; 1997 Dec; 73(6):3371-84. PubMed ID: 9414247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnesium metabolism in erythrocytes of patients with chronic renal failure and after renal transplantation.
    Vormann J; Günther T; Perras B; Rob PM
    Eur J Clin Chem Clin Biochem; 1994 Dec; 32(12):901-4. PubMed ID: 7696437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Na+/Mg2+ exchange is functionally coupled to the insulin receptor.
    Ferreira A; Rivera A; Romero JR
    J Cell Physiol; 2004 Jun; 199(3):434-40. PubMed ID: 15095290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.