BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18062583)

  • 21. Magnesium transport in ferret red cells.
    Flatman PW; Smith LM
    J Physiol; 1990 Dec; 431():11-25. PubMed ID: 2100303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loading rat heart myocytes with Mg2+ using low-[Na+] solutions.
    Almulla HA; Bush PG; Steele MG; Ellis D; Flatman PW
    J Physiol; 2006 Sep; 575(Pt 2):443-54. PubMed ID: 16793904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Na+/Mg2+ antiport by simultaneous 28Mg2+ influx.
    Günther T; Vormann J
    Biochem Biophys Res Commun; 1987 Nov; 148(3):1069-74. PubMed ID: 3689385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of Mg2+ influx, efflux and intracellular 'muffling' in leech neurones and glial cells.
    Günzel D; Schlue WR
    Magnes Res; 2000 Jun; 13(2):123-38. PubMed ID: 10907230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular and extracellular concentrations of Na+ modulate Mg2+ transport in rat ventricular myocytes.
    Tashiro M; Tursun P; Konishi M
    Biophys J; 2005 Nov; 89(5):3235-47. PubMed ID: 16085772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Na+-dependent regulation of the free Mg2+ concentration in neuropile glial cells and P neurones of the leech Hirudo medicinalis.
    Hintz K; Günzel D; Schlue WR
    Pflugers Arch; 1999 Feb; 437(3):354-62. PubMed ID: 9914391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of intracellular magnesium in ascites cells: involvement of different regulatory pathways.
    Wolf FI; Di Francesco A; Covacci V; Corda D; Cittadini A
    Arch Biochem Biophys; 1996 Jul; 331(2):194-200. PubMed ID: 8660698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnesium transport in magnesium-loaded ferret red blood cells.
    Flatman PW; Smith LM
    Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression and functional activity of the Na/Mg exchanger, TRPM7 and MagT1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells.
    Schweigel M; Kolisek M; Nikolic Z; Kuzinski J
    Magnes Res; 2008 Jun; 21(2):118-23. PubMed ID: 18705540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. cAMP activates magnesium efflux via the Na/Mg antiporter in ascites cells.
    Wolf FI; Di Francesco A; Covacci V; Cittadini A
    Biochem Biophys Res Commun; 1994 Aug; 202(3):1209-14. PubMed ID: 8060294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Transport of Mg2+ by Na+-Mg2+ exchange].
    Konishi M
    Clin Calcium; 2004 Aug; 14(8):37-40. PubMed ID: 15577094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron transport into erythroid cells by the Na+/Mg2+ antiport.
    Stonell LM; Savigni DL; Morgan EH
    Biochim Biophys Acta; 1996 Jun; 1282(1):163-70. PubMed ID: 8679654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Species-specific Mn2+/Mg2+ antiport from Mg2(+)-loaded erythrocytes.
    Günther T; Vormann J; Cragoe EJ
    FEBS Lett; 1990 Feb; 261(1):47-51. PubMed ID: 1689673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Na+/Mg2+ transporter acts as a Mg2+ buffering mechanism in PC12 cells.
    Kubota T; Tokuno K; Nakagawa J; Kitamura Y; Ogawa H; Suzuki Y; Suzuki K; Oka K
    Biochem Biophys Res Commun; 2003 Mar; 303(1):332-6. PubMed ID: 12646207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of magnesium efflux from rat spleen lymphocytes.
    Wolf FI; Di Francesco A; Covacci V; Cittadini A
    Arch Biochem Biophys; 1997 Aug; 344(2):397-403. PubMed ID: 9264554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for simultaneous 1Na+:1Mg2+ and ping pong 2Na+:1Mg2+ exchangers in rat thymocyte.
    Contreras-Jurado C; Sanchez-Morito N; Ruiz-Contreras A; Gonzalez-Martinez MT; Soler-Diaz A
    Front Biosci; 2005 May; 10():1693-706. PubMed ID: 15769659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differentiation of HL-60 promyelocytic leukemia cells is accompanied by a modification of magnesium homeostasis.
    Wolf FI; Covacci V; Bruzzese N; Di Francesco A; Sacchetti A; Corda D; Cittadini A
    J Cell Biochem; 1998 Dec; 71(3):441-8. PubMed ID: 9831080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na+ gradient-dependent Mg2+ transport in smooth muscle cells of guinea pig tenia cecum.
    Tashiro M; Konishi M
    Biophys J; 1997 Dec; 73(6):3371-84. PubMed ID: 9414247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnesium metabolism in erythrocytes of patients with chronic renal failure and after renal transplantation.
    Vormann J; Günther T; Perras B; Rob PM
    Eur J Clin Chem Clin Biochem; 1994 Dec; 32(12):901-4. PubMed ID: 7696437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Na+/Mg2+ exchange is functionally coupled to the insulin receptor.
    Ferreira A; Rivera A; Romero JR
    J Cell Physiol; 2004 Jun; 199(3):434-40. PubMed ID: 15095290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.