These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 18062648)

  • 1. FAME profiles in Pseudomonas vesicularis during catechol and phenol degradation in the presence of glucose as an additional carbon source.
    Mrozik A; Piotrowska-Seget Z; Labuzek S
    Pol J Microbiol; 2007; 56(3):157-64. PubMed ID: 18062648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of phenol utilization in Pseudomonas CF600 grown under varying nitrogen levels.
    Moharikar A; Purohit HJ
    J Basic Microbiol; 2003; 43(1):56-61. PubMed ID: 12596242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of phenol degradation by soil bioaugmentation with Pseudomonas sp. JS150.
    Mrozik A; Miga S; Piotrowska-Seget Z
    J Appl Microbiol; 2011 Dec; 111(6):1357-70. PubMed ID: 21883735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration.
    Hupert-Kocurek K; Guzik U; Wojcieszyńska D
    Acta Biochim Pol; 2012; 59(3):345-51. PubMed ID: 22826823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of phenol-degrading Pseudomonas putida KB3 to suboptimal growth condition: A focus on degradative rate, membrane properties and expression of xylE and cfaB genes.
    Nowak A; Żur-Pińska J; Piński A; Pacek G; Mrozik A
    Ecotoxicol Environ Saf; 2021 Sep; 221():112431. PubMed ID: 34146980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents.
    Santos VL; Heilbuth NM; Braga DT; Monteiro AS; Linardi VR
    J Basic Microbiol; 2003; 43(3):238-48. PubMed ID: 12761775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and partial characterization of extracellular NADPH-dependent phenol hydroxylase oxidizing phenol to catechol in Comamonas testosteroni.
    Turek M; Vilimkova L; Kremlackova V; Paca J; Halecky M; Paca J; Stiborova M
    Neuro Endocrinol Lett; 2011; 32 Suppl 1():137-45. PubMed ID: 22167219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylation of phenol to catechol by Candida tropicalis: involvement of cytochrome P450.
    Stiborová M; Suchá V; Miksanová M; Páca J; Páca J
    Gen Physiol Biophys; 2003 Jun; 22(2):167-79. PubMed ID: 14661729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols.
    Nowak A; Greń I; Mrozik A
    World J Microbiol Biotechnol; 2016 Dec; 32(12):198. PubMed ID: 27757793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy.
    Kurbatov L; Albrecht D; Herrmann H; Petruschka L
    Environ Microbiol; 2006 Mar; 8(3):466-78. PubMed ID: 16478453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth phase dependent substrate utilization by Pseudomonas strain PH1.
    Narde GK; Purohit HJ
    Prikl Biokhim Mikrobiol; 2002; 38(6):653-7. PubMed ID: 12449795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
    Veselý M; Knoppová M; Nesvera J; Pátek M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometric mapping of the enzymes involved in the phenol degradation of an indigenous soil pseudomonad.
    Tsirogianni I; Aivaliotis M; Karas M; Tsiotis G
    Biochim Biophys Acta; 2004 Jul; 1700(1):117-23. PubMed ID: 15210131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the membrane subproteomes during growth of a new pseudomonas strain on lysogeny broth medium, glucose, and phenol.
    Papasotiriou DG; Markoutsa S; Meyer B; Papadioti A; Karas M; Tsiotis G
    J Proteome Res; 2008 Oct; 7(10):4278-88. PubMed ID: 18707154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on cyclopropane fatty acid synthesis. Effect of carbon source and oxygen tension on cyclopropane fatty acid synthetase activity in Pseudomonas denitrificans.
    Jacques NA; Hunt Al
    Biochim Biophys Acta; 1980 Sep; 619(3):453-70. PubMed ID: 7459362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas.
    Mrozik A; Piotrowska-Seget Z; Łabuzek S
    Microbiol Res; 2004; 159(1):87-95. PubMed ID: 15160611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of phenol in static cultures by Penicillium chrysogenum ERK1: catalytic abilities and residual phytotoxicity.
    Wolski EA; Barrera V; Castellari C; González JF
    Rev Argent Microbiol; 2012; 44(2):113-21. PubMed ID: 22997771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity.
    Alva VA; Peyton BM
    Environ Sci Technol; 2003 Oct; 37(19):4397-402. PubMed ID: 14572091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.