These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 18062655)
41. Metabolism of alpha-D-[1,2-13C]glucose pentaacetate and alpha-D-glucose penta[2-13C]acetate in rat hepatocytes. Malaisse WJ; Ladrière L; Kadiata MM; Verbruggen I; Willem R Arch Biochem Biophys; 2000 Sep; 381(1):61-6. PubMed ID: 11019820 [TBL] [Abstract][Full Text] [Related]
42. Clostridium thermobutyricum: growth studies and stimulation of butyrate formation by acetate supplementation. Canganella F; Kuk SU; Morgan H; Wiegel J Microbiol Res; 2002; 157(2):149-56. PubMed ID: 12002403 [TBL] [Abstract][Full Text] [Related]
43. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859 [TBL] [Abstract][Full Text] [Related]
44. The lactate issue revisited: novel feeding protocols to examine inhibition of cell proliferation and glucose metabolism in hematopoietic cell cultures. Patel SD; Papoutsakis ET; Winter JN; Miller WM Biotechnol Prog; 2000; 16(5):885-92. PubMed ID: 11027185 [TBL] [Abstract][Full Text] [Related]
45. Metabolic aspects of aspirin-induced apoptosis in yeast. Sapienza K; Balzan R FEMS Yeast Res; 2005 Dec; 5(12):1207-13. PubMed ID: 15982932 [TBL] [Abstract][Full Text] [Related]
46. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor. Nevatalo LM; Mäkinen AE; Kaksonen AH; Puhakka JA Bioresour Technol; 2010 Jan; 101(1):276-84. PubMed ID: 19716290 [TBL] [Abstract][Full Text] [Related]
47. [Productions analyses and pH dynamics during rice straw degradation by the lignocellulose degradation bacteria system WSC-6]. Wang WD; Wang XF; Liu CL; Li YH; Lü YC; Cui ZJ Huan Jing Ke Xue; 2008 Jan; 29(1):219-24. PubMed ID: 18441944 [TBL] [Abstract][Full Text] [Related]
48. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
49. Brine-Releasable Hydrogen Sulfide in Wine: Mechanism of Release from Copper Complexes and Effects of Glutathione. Allison RB; Sacks GL J Agric Food Chem; 2021 Nov; 69(44):13164-13172. PubMed ID: 34709813 [TBL] [Abstract][Full Text] [Related]
50. Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria. Londry KL; Jahnke LL; Des Marais DJ Appl Environ Microbiol; 2004 Feb; 70(2):745-51. PubMed ID: 14766550 [TBL] [Abstract][Full Text] [Related]
51. Model-based Characterization of the Parameters of Dissimilatory Sulfate Reduction Under the Effect of Different Initial Density of Desulfovibrio piger Vib-7 Bacterial Cells. Kushkevych I; Bolis M; Bartos M Open Microbiol J; 2015; 9():55-69. PubMed ID: 26668663 [TBL] [Abstract][Full Text] [Related]
52. The influence of light/dark cycle at low light frequency on the desulfurization by a photosynthetic microorganism. Jeong GS; Kim BW J Biosci Bioeng; 1999; 87(4):481-8. PubMed ID: 16232502 [TBL] [Abstract][Full Text] [Related]
53. Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Güde H; Strohl WR; Larkin JM Arch Microbiol; 1981 Jul; 129(5):357-60. PubMed ID: 7283635 [TBL] [Abstract][Full Text] [Related]
54. Alternative carbon sources for the production of plant cellular agriculture: a case study on acetate. Hann EC; Harland-Dunaway M; Garcia AJ; Meuser JE; Jinkerson RE Front Plant Sci; 2023; 14():1104751. PubMed ID: 37954996 [TBL] [Abstract][Full Text] [Related]
55. Analysis of pH Dose-dependent Growth of Sulfate-reducing Bacteria. Kushkevych I; Dordević D; Vítězová M Open Med (Wars); 2019; 14():66-74. PubMed ID: 30775453 [TBL] [Abstract][Full Text] [Related]
56. Factors involved in the (near) anoxic survival time of Cerastoderma edule: associated bacteria vs. endogenous fuel. Babarro JM; de Zwaan A Comp Biochem Physiol C Toxicol Pharmacol; 2001 Mar; 128(3):325-37. PubMed ID: 11255106 [TBL] [Abstract][Full Text] [Related]
57. Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. Boschker HT; de Graaf W; Köster M; Meyer-Reil L; Cappenberg TE FEMS Microbiol Ecol; 2001 Mar; 35(1):97-103. PubMed ID: 11248394 [TBL] [Abstract][Full Text] [Related]
59. Comparative Proteomic Analysis of Desulfotomaculum reducens MI-1: Insights into the Metabolic Versatility of a Gram-Positive Sulfate- and Metal-Reducing Bacterium. Otwell AE; Callister SJ; Zink EM; Smith RD; Richardson RE Front Microbiol; 2016; 7():191. PubMed ID: 26925055 [TBL] [Abstract][Full Text] [Related]
60. A study of mixed continuous cultures of sulfate-reducing and methane-producing bacteria. Cappenberg TE Microb Ecol; 1975 Mar; 2(1):60-72. PubMed ID: 24241162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]