These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 18062704)

  • 1. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.
    Herrero MA; Kremsner JM; Kappe CO
    J Org Chem; 2008 Jan; 73(1):36-47. PubMed ID: 18062704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols.
    de Souza RO; Antunes OA; Kroutil W; Kappe CO
    J Org Chem; 2009 Aug; 74(16):6157-62. PubMed ID: 19601570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions.
    Dallinger D; Irfan M; Suljanovic A; Kappe CO
    J Org Chem; 2010 Aug; 75(15):5278-88. PubMed ID: 20670032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.
    Razzaq T; Kremsner JM; Kappe CO
    J Org Chem; 2008 Aug; 73(16):6321-9. PubMed ID: 18613726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.
    Irfan M; Fuchs M; Glasnov TN; Kappe CO
    Chemistry; 2009 Nov; 15(43):11608-18. PubMed ID: 19774573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature distributions within zeolite precursor solutions in the presence of microwaves.
    Gharibeh M; Tompsett G; Lu F; Auerbach SM; Yngvesson KS; Conner WC
    J Phys Chem B; 2009 Sep; 113(37):12506-20. PubMed ID: 19469480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical verification of nonthermal microwave effects on intramolecular reactions.
    Kanno M; Nakamura K; Kanai E; Hoki K; Kono H; Tanaka M
    J Phys Chem A; 2012 Mar; 116(9):2177-83. PubMed ID: 22332996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.
    Gutmann B; Obermayer D; Reichart B; Prekodravac B; Irfan M; Kremsner JM; Kappe CO
    Chemistry; 2010 Oct; 16(40):12182-94. PubMed ID: 20845418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the formation of CuInS2 nanoparticles by the oleylamine route: comparison of microwave-assisted and conventional syntheses.
    Pein A; Baghbanzadeh M; Rath T; Haas W; Maier E; Amenitsch H; Hofer F; Kappe CO; Trimmel G
    Inorg Chem; 2011 Jan; 50(1):193-200. PubMed ID: 21141832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting competitive mechanisms: thionation vs. cycloaddition in the reaction of thioisomunchnones with isothiocyanates under microwave irradiation.
    Cantillo D; Avalos M; Babiano R; Cintas P; Jiménez JL; Light ME; Palacios JC
    J Org Chem; 2009 Oct; 74(20):7644-50. PubMed ID: 19775139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The physics of heating by time-dependent fields: microwaves and water revisited.
    Huang W; Richert R
    J Phys Chem B; 2008 Aug; 112(32):9909-13. PubMed ID: 18646805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.
    de la Hoz A; Díaz-Ortiz A; Moreno A
    Chem Soc Rev; 2005 Feb; 34(2):164-78. PubMed ID: 15672180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production.
    Mazubert A; Taylor C; Aubin J; Poux M
    Bioresour Technol; 2014 Jun; 161():270-9. PubMed ID: 24717320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical assessment of the specific role of microwave irradiation in the synthesis of ZnO micro- and nanostructured materials.
    Baghbanzadeh M; Skapin SD; Orel ZC; Kappe CO
    Chemistry; 2012 Apr; 18(18):5724-31. PubMed ID: 22454084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature measurement during microwave cooking.
    Mullin J; Bows J
    Food Addit Contam; 1993; 10(6):663-72. PubMed ID: 8288010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.