These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18062709)

  • 1. Quantifying growth of symmetric and asymmetric lipid bilayer domains.
    Blanchette CD; Orme CA; Ratto TV; Longo ML
    Langmuir; 2008 Feb; 24(4):1219-24. PubMed ID: 18062709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures.
    Szmodis AW; Blanchette CD; Longo ML; Orme CA; Parikh AN
    Biointerphases; 2010 Dec; 5(4):120-30. PubMed ID: 21219033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-mechanical characterization of asymmetric DLPC/DSPC supported lipid bilayers.
    Kamble S; Patil S; Appala VRM
    Chem Phys Lipids; 2021 Jan; 234():105007. PubMed ID: 33160952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using nucleation rates to determine the interfacial line tension of symmetric and asymmetric lipid bilayer domains.
    Blanchette CD; Lin WC; Orme CA; Ratto TV; Longo ML
    Langmuir; 2007 May; 23(11):5875-7. PubMed ID: 17451264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
    Blanchette CD; Lin WC; Ratto TV; Longo ML
    Biophys J; 2006 Jun; 90(12):4466-78. PubMed ID: 16565044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of galactosylceramides on the nanomechanical properties of lipid bilayer models: an AFM-force spectroscopy study.
    Gumí-Audenis B; Sanz F; Giannotti MI
    Soft Matter; 2015 Jul; 11(27):5447-54. PubMed ID: 26058499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol.
    Lin WC; Blanchette CD; Longo ML
    Biophys J; 2007 Apr; 92(8):2831-41. PubMed ID: 17237202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study.
    Lin WC; Blanchette CD; Ratto TV; Longo ML
    Biophys J; 2006 Jan; 90(1):228-37. PubMed ID: 16214871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of the topology of supported dimirystoyl-distearoyl phosphatidylcholine bilayers.
    Giocondi MC; Pacheco L; Milhiet PE; Le Grimellec C
    Ultramicroscopy; 2001 Jan; 86(1-2):151-7. PubMed ID: 11215618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ripples and the formation of anisotropic lipid domains: imaging two-component supported double bilayers by atomic force microscopy.
    Leidy C; Kaasgaard T; Crowe JH; Mouritsen OG; Jørgensen K
    Biophys J; 2002 Nov; 83(5):2625-33. PubMed ID: 12414696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the formation of symmetric and asymmetric DLPC-DAPC lipid bilayer domains.
    Ritter M; Schmidt S; Jakab M; Paulmichl M; Henderson R
    Cell Physiol Biochem; 2013; 32(1):46-52. PubMed ID: 23867833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine.
    Brown KL; Conboy JC
    J Phys Chem B; 2013 Dec; 117(48):15041-50. PubMed ID: 24200035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transitions in supported lipid bilayers studied by AFM.
    Alessandrini A; Facci P
    Soft Matter; 2014 Oct; 10(37):7145-64. PubMed ID: 25090108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of the transbilayer movement of phospholipids by sum-frequency vibrational spectroscopy.
    Liu J; Conboy JC
    J Am Chem Soc; 2004 Jul; 126(27):8376-7. PubMed ID: 15237984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obstructed diffusion in phase-separated supported lipid bilayers: a combined atomic force microscopy and fluorescence recovery after photobleaching approach.
    Ratto TV; Longo ML
    Biophys J; 2002 Dec; 83(6):3380-92. PubMed ID: 12496105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ternary lipid bilayers containing cholesterol in a high curvature silica xerogel environment.
    Goksu EI; Longo ML
    Langmuir; 2010 Jun; 26(11):8614-24. PubMed ID: 20143868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct visualization of asymmetric behavior in supported lipid bilayers at the gel-fluid phase transition.
    Feng ZV; Spurlin TA; Gewirth AA
    Biophys J; 2005 Mar; 88(3):2154-64. PubMed ID: 15596519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drying and rehydration of DLPC/DSPC symmetric and asymmetric supported lipid bilayers: a combined AFM and fluorescence microscopy study.
    Bennun SV; Faller R; Longo ML
    Langmuir; 2008 Sep; 24(18):10371-81. PubMed ID: 18707144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM surface morphology and friction force studies of microscale domain structures of binary phospholipids.
    Oguchi T; Sakai K; Sakai H; Abe M
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):205-9. PubMed ID: 20439152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.