BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 18062771)

  • 1. Mitochondria and cellular oxygen sensing in the HIF pathway.
    Taylor CT
    Biochem J; 2008 Jan; 409(1):19-26. PubMed ID: 18062771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story.
    Dehne N; Brüne B
    Antioxid Redox Signal; 2014 Jan; 20(2):339-52. PubMed ID: 22794181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial regulation of oxygen sensing.
    Chandel NS
    Adv Exp Med Biol; 2010; 661():339-54. PubMed ID: 20204741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetics of mitochondrial electron transport chain in regulating oxygen sensing.
    Bell EL; Chandel NS
    Methods Enzymol; 2007; 435():447-61. PubMed ID: 17998068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS.
    Zepeda AB; Pessoa A; Castillo RL; Figueroa CA; Pulgar VM; Farías JG
    Cell Biochem Funct; 2013 Aug; 31(6):451-9. PubMed ID: 23760768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular oxygen sensing need in CNS function: physiological and pathological implications.
    Acker T; Acker H
    J Exp Biol; 2004 Aug; 207(Pt 18):3171-88. PubMed ID: 15299039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension.
    Bonnet S; Michelakis ED; Porter CJ; Andrade-Navarro MA; Thébaud B; Bonnet S; Haromy A; Harry G; Moudgil R; McMurtry MS; Weir EK; Archer SL
    Circulation; 2006 Jun; 113(22):2630-41. PubMed ID: 16735674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial complex III regulates hypoxic activation of HIF.
    Klimova T; Chandel NS
    Cell Death Differ; 2008 Apr; 15(4):660-6. PubMed ID: 18219320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization.
    Simon MC
    Adv Exp Med Biol; 2006; 588():165-70. PubMed ID: 17089888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia.
    Guzy RD; Schumacker PT
    Exp Physiol; 2006 Sep; 91(5):807-19. PubMed ID: 16857720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.
    Guzy RD; Hoyos B; Robin E; Chen H; Liu L; Mansfield KD; Simon MC; Hammerling U; Schumacker PT
    Cell Metab; 2005 Jun; 1(6):401-8. PubMed ID: 16054089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species.
    Bell EL; Chandel NS
    Essays Biochem; 2007; 43():17-27. PubMed ID: 17705790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen sensing in the body.
    Lahiri S; Roy A; Baby SM; Hoshi T; Semenza GL; Prabhakar NR
    Prog Biophys Mol Biol; 2006 Jul; 91(3):249-86. PubMed ID: 16137743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellfood™ improves respiratory metabolism of endothelial cells and inhibits hypoxia-induced reactive oxygen species (ros) generation.
    Ferrero E; Fulgenzi A; Belloni D; Foglieni C; Ferrero ME
    J Physiol Pharmacol; 2011 Jun; 62(3):287-93. PubMed ID: 21893688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria.
    Thomas LW; Ashcroft M
    Cell Mol Life Sci; 2019 May; 76(9):1759-1777. PubMed ID: 30767037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanide preconditioning protects brain endothelial and NT2 neuron-like cells against glucotoxicity: role of mitochondrial reactive oxygen species and HIF-1α.
    Correia SC; Santos RX; Cardoso SM; Santos MS; Oliveira CR; Moreira PI
    Neurobiol Dis; 2012 Jan; 45(1):206-18. PubMed ID: 21854848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity.
    Li YN; Xi MM; Guo Y; Hai CX; Yang WL; Qin XJ
    Toxicol Lett; 2014 Jan; 224(2):165-74. PubMed ID: 24188932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.
    Brunelle JK; Bell EL; Quesada NM; Vercauteren K; Tiranti V; Zeviani M; Scarpulla RC; Chandel NS
    Cell Metab; 2005 Jun; 1(6):409-14. PubMed ID: 16054090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia in cancer cell metabolism and pH regulation.
    Brahimi-Horn MC; Pouysségur J
    Essays Biochem; 2007; 43():165-78. PubMed ID: 17705800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation.
    Lin X; David CA; Donnelly JB; Michaelides M; Chandel NS; Huang X; Warrior U; Weinberg F; Tormos KV; Fesik SW; Shen Y
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):174-9. PubMed ID: 18172210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.