These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18062776)

  • 41. Association of endothelial nitric oxide synthase Glu298Asp, 4b/a, and -786T>C gene variants with diabetic nephropathy.
    Ezzidi I; Mtiraoui N; Mohamed MB; Mahjoub T; Kacem M; Almawi WY
    J Diabetes Complications; 2008; 22(5):331-8. PubMed ID: 18413207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of calcium channel blockade on adrenergically induced renal vasoconstriction in rat models of renal impairment.
    Khan AH; Sattar MA; Abdullah NA; Johns EJ
    Clin Exp Pharmacol Physiol; 2009 May; 36(5-6):501-8. PubMed ID: 19673932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Real-time measurement of kidney tubule fluid nitric oxide concentrations in early diabetes: disparate changes in different rodent models.
    Levine DZ; Iacovitti M
    Nitric Oxide; 2006 Aug; 15(1):87-92. PubMed ID: 16510300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Glomerular hyperfiltration during sugar diabetes].
    Christiansen JS
    Journ Annu Diabetol Hotel Dieu; 1985; ():183-95. PubMed ID: 2577961
    [No Abstract]   [Full Text] [Related]  

  • 45. Beneficial effects of soy protein consumption for renal function.
    Anderson JW
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():324-8. PubMed ID: 18296369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidants and iron in progressive kidney disease.
    Shah SV
    J Ren Nutr; 2006 Jul; 16(3):185-9. PubMed ID: 16825016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insulin resistance in diabetic nephropathy--cause or consequence?
    Svensson M; Eriksson JW
    Diabetes Metab Res Rev; 2006; 22(5):401-10. PubMed ID: 16703644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Endothelial relaxation factor in the development of diabetic nephropathy].
    Shestakova MV; Severina IS; Dedov II; Ragozin AK; Belushkina NN; Riaposova IK
    Vestn Ross Akad Med Nauk; 1995; (5):30-4. PubMed ID: 7626982
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pathophysiology of diabetic nephropathy.
    Sego S
    Nephrol Nurs J; 2007; 34(6):631-3. PubMed ID: 18203571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New and old markers of progression of diabetic nephropathy.
    Jerums G; Premaratne E; Panagiotopoulos S; Clarke S; Power DA; MacIsaac RJ
    Diabetes Res Clin Pract; 2008 Nov; 82 Suppl 1():S30-7. PubMed ID: 18937992
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Renal changes in early diabetes. The disease and a disease model].
    Seyer-Hansen K
    Ugeskr Laeger; 1981 Mar; 143(14):874-8. PubMed ID: 7027565
    [No Abstract]   [Full Text] [Related]  

  • 52. Predictive value of interleukin-10 promoter genotypes and haplotypes in determining the susceptibility to nephropathy in type 2 diabetes patients.
    Mtiraoui N; Ezzidi I; Kacem M; Ben Hadj Mohamed M; Chaieb M; Haj Jilani AB; Mahjoub T; Almawi WY
    Diabetes Metab Res Rev; 2009 Jan; 25(1):57-63. PubMed ID: 19031431
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Soluble Urokinase Receptor and the Kidney Response in Diabetes Mellitus.
    Dande RR; Peev V; Altintas MM; Reiser J
    J Diabetes Res; 2017; 2017():3232848. PubMed ID: 28596971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of albuminuria by angiotensin receptor blocker beyond blood pressure lowering: evaluation in megsin/receptor for advanced glycation end products/inducible nitric oxide synthase triple transgenic diabetic nephropathy mouse model.
    Ohtomo S; Ito M; Izuhara Y; Van Ypersele De Strihou C; Miyata T
    Nephrology (Carlton); 2008 Dec; 13(6):517-21. PubMed ID: 18363646
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular programs associated with glomerular hyperfiltration in early diabetic kidney disease.
    Stefansson VTN; Nair V; Melsom T; Looker HC; Mariani LH; Fermin D; Eichinger F; Menon R; Subramanian L; Ladd P; Harned R; Harder JL; Hodgin JB; Bjornstad P; Nelson PJ; Eriksen BO; Nelson RG; Kretzler M
    Kidney Int; 2022 Dec; 102(6):1345-1358. PubMed ID: 36055599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A more tubulocentric view of diabetic kidney disease.
    Zeni L; Norden AGW; Cancarini G; Unwin RJ
    J Nephrol; 2017 Dec; 30(6):701-717. PubMed ID: 28840540
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A breakthrough in diabetic nephropathy: the role of endothelial dysfunction.
    Nakagawa T; Segal M; Croker B; Johnson RJ
    Nephrol Dial Transplant; 2007 Oct; 22(10):2775-7. PubMed ID: 17595179
    [No Abstract]   [Full Text] [Related]  

  • 58. Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury.
    Faulhaber-Walter R; Chen L; Oppermann M; Kim SM; Huang Y; Hiramatsu N; Mizel D; Kajiyama H; Zerfas P; Briggs JP; Kopp JB; Schnermann J
    J Am Soc Nephrol; 2008 Apr; 19(4):722-30. PubMed ID: 18256360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rodent models to study type 1 and type 2 diabetes induced human diabetic nephropathy.
    Talukdar A; Basumatary M
    Mol Biol Rep; 2023 Sep; 50(9):7759-7782. PubMed ID: 37458869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Are glomerular hyperfiltration and hyperperfusion involved in the development and progression of nephropathies?].
    Kokot F; Kuska J
    Z Urol Nephrol; 1988 Jun; 81(6):359-66. PubMed ID: 3063012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.