BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18062954)

  • 1. The coxsackie and adenovirus receptor (CAR) is required for renal epithelial differentiation within the zebrafish pronephros.
    Raschperger E; Neve EP; Wernerson A; Hultenby K; Pettersson RF; Majumdar A
    Dev Biol; 2008 Jan; 313(1):455-64. PubMed ID: 18062954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier.
    Ebarasi L; He L; Hultenby K; Takemoto M; Betsholtz C; Tryggvason K; Majumdar A
    Dev Biol; 2009 Oct; 334(1):1-9. PubMed ID: 19393641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis.
    Raschperger E; Thyberg J; Pettersson S; Philipson L; Fuxe J; Pettersson RF
    Exp Cell Res; 2006 May; 312(9):1566-80. PubMed ID: 16542650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche.
    Majumdar A; Drummond IA
    Dev Genet; 1999; 24(3-4):220-9. PubMed ID: 10322630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function.
    Drummond IA; Majumdar A; Hentschel H; Elger M; Solnica-Krezel L; Schier AF; Neuhauss SC; Stemple DL; Zwartkruis F; Rangini Z; Driever W; Fishman MC
    Development; 1998 Dec; 125(23):4655-67. PubMed ID: 9806915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neph3 associates with regulation of glomerular and neural development in zebrafish.
    Wang H; Lehtonen S; Chen YC; Heikkilä E; Panula P; Holthöfer H
    Differentiation; 2012 Jan; 83(1):38-46. PubMed ID: 22099175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apical lumen formation in renal epithelia.
    Schlüter MA; Margolis B
    J Am Soc Nephrol; 2009 Jul; 20(7):1444-52. PubMed ID: 19497970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural characterization of the pronephric glomerulus development in zebrafish.
    Zhu X; Chen Z; Zeng C; Wang L; Xu F; Hou Q; Liu Z
    J Morphol; 2016 Aug; 277(8):1104-12. PubMed ID: 27185367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement for a uroplakin 3a-like protein in the development of zebrafish pronephric tubule epithelial cell function, morphogenesis, and polarity.
    Mitra S; Lukianov S; Ruiz WG; Cianciolo Cosentino C; Sanker S; Traub LM; Hukriede NA; Apodaca G
    PLoS One; 2012; 7(7):e41816. PubMed ID: 22848617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-pattern in the pronephric kidney field of zebrafish.
    Serluca FC; Fishman MC
    Development; 2001 Jun; 128(12):2233-41. PubMed ID: 11493543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Myofilamentary structures in the glomerular and tubular epithelia of the early fetal metanephros of man].
    Zimmermann HD; Boseck S
    Virchows Arch A Pathol Pathol Anat; 1972; 357(1):53-66. PubMed ID: 4628350
    [No Abstract]   [Full Text] [Related]  

  • 12. Terminal differentiation of epithelia.
    Al-Awqati Q; Vijayakumar S; Takito J
    Biol Chem; 2003 Sep; 384(9):1255-8. PubMed ID: 14515985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel role for the chemokine receptor Cxcr4 in kidney morphogenesis: an in vitro study.
    Ueland J; Yuan A; Marlier A; Gallagher AR; Karihaloo A
    Dev Dyn; 2009 May; 238(5):1083-91. PubMed ID: 19384956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the Fcalpha/muR isoform specifically expressed in the kidney tubules.
    Kurita N; Honda S; Usui K; Shimizu Y; Miyamoto A; Tahara-Hanaoka S; Shibuya K; Shibuya A
    Mol Immunol; 2009 Feb; 46(4):749-53. PubMed ID: 19027165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zebrafish: a model system for the study of vertebrate renal development, function, and pathophysiology.
    Ebarasi L; Oddsson A; Hultenby K; Betsholtz C; Tryggvason K
    Curr Opin Nephrol Hypertens; 2011 Jul; 20(4):416-24. PubMed ID: 21519251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros.
    Anzenberger U; Bit-Avragim N; Rohr S; Rudolph F; Dehmel B; Willnow TE; Abdelilah-Seyfried S
    J Cell Sci; 2006 May; 119(Pt 10):2127-37. PubMed ID: 16638803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Six1a is required for the onset of fast muscle differentiation in zebrafish.
    Bessarab DA; Chong SW; Srinivas BP; Korzh V
    Dev Biol; 2008 Nov; 323(2):216-28. PubMed ID: 18789916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAR: a virus receptor within the tight junction.
    Coyne CB; Bergelson JM
    Adv Drug Deliv Rev; 2005 Apr; 57(6):869-82. PubMed ID: 15820557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia.
    Majumdar A; Lun K; Brand M; Drummond IA
    Development; 2000 May; 127(10):2089-98. PubMed ID: 10769233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis.
    Bracken CM; Mizeracka K; McLaughlin KA
    Dev Dyn; 2008 Jan; 237(1):132-44. PubMed ID: 18069689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.