These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18062981)
1. The ultimate band compression factor in gradient elution chromatography. Gritti F; Guiochon G J Chromatogr A; 2008 Jan; 1178(1-2):79-91. PubMed ID: 18062981 [TBL] [Abstract][Full Text] [Related]
2. The bandwidth in gradient elution chromatography with a retained organic modifier. Gritti F; Guiochon G J Chromatogr A; 2007 Mar; 1145(1-2):67-82. PubMed ID: 17280680 [TBL] [Abstract][Full Text] [Related]
3. Analytical solutions of the ideal model for gradient liquid chromatography. Hao W; Zhang X; Hou K Anal Chem; 2006 Nov; 78(22):7828-40. PubMed ID: 17105177 [TBL] [Abstract][Full Text] [Related]
4. Exact peak compression factor in linear gradient elution. I. Theory. Gritti F; Guiochon G J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548 [TBL] [Abstract][Full Text] [Related]
5. Experimental band compression factor of a neutral compound under high pressure gradient elution. Gritti F; Guiochon G J Chromatogr A; 2008 Dec; 1215(1-2):64-73. PubMed ID: 19027118 [TBL] [Abstract][Full Text] [Related]
6. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution. Jin CH; Lee JW; Row KH J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619 [TBL] [Abstract][Full Text] [Related]
12. Modeling the combined effect of temperature and organic modifier content on reversed-phase chromatographic retention. Effectiveness of derived models in isocratic and isothermal mode retention prediction. Pappa-Louisi A; Nikitas P; Papachristos K; Zisi C J Chromatogr A; 2008 Aug; 1201(1):27-34. PubMed ID: 18554606 [TBL] [Abstract][Full Text] [Related]
13. Influence of pH on retention in linear organic modifier gradient RP HPLC. Wiczling P; Kaliszan R Anal Chem; 2008 Oct; 80(20):7855-61. PubMed ID: 18781775 [TBL] [Abstract][Full Text] [Related]
14. Fundamental chromatographic equations designed for columns packed with very fine particles and operated at very high pressures. Applications to the prediction of elution times and the column efficiencies. Gritti F; Guiochon G J Chromatogr A; 2008 Oct; 1206(2):113-22. PubMed ID: 18775540 [TBL] [Abstract][Full Text] [Related]
15. Modeling the effects of type and concentration of organic modifiers, column type and chemical structure of analytes on the retention in reversed phase liquid chromatography using a single model. Jouyban A; Soltani S; Shayanfar A; Pappa-Louisi A J Chromatogr A; 2011 Sep; 1218(37):6454-63. PubMed ID: 21820120 [TBL] [Abstract][Full Text] [Related]
16. Peak dispersion in gradient elution: An insight based on the plate model. Baeza-Baeza JJ; GarcĂa-Alvarez-Coque MC J Chromatogr A; 2020 Feb; 1613():460670. PubMed ID: 31732158 [TBL] [Abstract][Full Text] [Related]
17. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC. Lee JW; Row KH J Sep Sci; 2009 Jan; 32(2):221-30. PubMed ID: 19156644 [TBL] [Abstract][Full Text] [Related]
18. Development of dual gradient column in liquid chromatography. Oda T; Kitagawa S; Ohtani H J Chromatogr A; 2006 Feb; 1105(1-2):154-8. PubMed ID: 16185701 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the ideal model for a single component in preparative gradient elution chromatography. Hao W; Zhang X; Hu F Anal Chem; 2007 Mar; 79(6):2507-17. PubMed ID: 17302390 [TBL] [Abstract][Full Text] [Related]
20. Influence of viscous friction heating on the efficiency of columns operated under very high pressures. Gritti F; Martin M; Guiochon G Anal Chem; 2009 May; 81(9):3365-84. PubMed ID: 19361228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]