BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18063299)

  • 21. Sorption-desorption of trinitrotoluene in soils: effect of saturating metal cations.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    Bull Environ Contam Toxicol; 2008 May; 80(5):443-6. PubMed ID: 18496629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.
    Tu R; Liu B; Wang Z; Gao D; Wang F; Fang Q; Zhang Z
    Anal Chem; 2008 May; 80(9):3458-65. PubMed ID: 18336012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sitting-Atop metallo-porphyrin complexes: experimental and theoretical investigations on such elusive species.
    De Luca G; Romeo A; Scolaro LM; Ricciardi G; Rosa A
    Inorg Chem; 2009 Sep; 48(17):8493-507. PubMed ID: 19650629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulated rainfall-driven dissolution of TNT, Tritonal, Comp B and Octol particles.
    Taylor S; Lever JH; Fadden J; Perron N; Packer B
    Chemosphere; 2009 May; 75(8):1074-81. PubMed ID: 19215963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phototransformation of 2,4,6-trinitrotoluene: sensitized by riboflavin under different irradiation spectral range.
    Yang X; Zhao X; Hwang HM
    J Hazard Mater; 2007 May; 143(1-2):271-6. PubMed ID: 17049731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissolution of a new explosive formulation containing TNT and HMX: comparison with octol.
    Monteil-Rivera F; Deschamps S; Ampleman G; Thiboutot S; Hawari J
    J Hazard Mater; 2010 Feb; 174(1-3):281-8. PubMed ID: 19815337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater.
    Barreto-Rodrigues M; Silva FT; Paiva TC
    J Hazard Mater; 2009 Jun; 165(1-3):1224-8. PubMed ID: 19022574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of TNT transport from landmines: numerical approach.
    Irrazábal M; Hernández-Rivera SP; Briano JG
    Chemosphere; 2009 Oct; 77(4):546-51. PubMed ID: 19664798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation.
    Chang SJ; Liu YC
    J Environ Sci (China); 2007; 19(12):1430-5. PubMed ID: 18277645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron attachment to trinitrotoluene (TNT) embedded in He droplets: complete freezing of dissociation intermediates in an extended range of electron energies.
    Mauracher A; Schöbel H; Ferreira da Silva F; Edtbauer A; Mitterdorfer C; Denifl S; Märk TD; Illenberger E; Scheier P
    Phys Chem Chem Phys; 2009 Oct; 11(37):8240-3. PubMed ID: 19756280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides.
    Makris KC; Shakya KM; Datta R; Sarkar D; Pachanoor D
    Environ Pollut; 2007 Jul; 148(1):101-6. PubMed ID: 17240499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A reversible dual-response fluorescence switch for the detection of multiple analytes.
    Geng J; Liu P; Liu B; Guan G; Zhang Z; Han MY
    Chemistry; 2010 Mar; 16(12):3720-7. PubMed ID: 20151433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The hydrogen bond between 5-(2-carboxyphenyl)-10, 15, 20-triphenylporphyrin and amino acid ester--study with UV-Vis titration and 1H-NMR].
    Peng X; Huang J; Ji L
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Dec; 19(6):884-5. PubMed ID: 15822326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene oxide-based optical biosensor functionalized with peptides for explosive detection.
    Zhang Q; Zhang D; Lu Y; Yao Y; Li S; Liu Q
    Biosens Bioelectron; 2015 Jun; 68():494-499. PubMed ID: 25636021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.
    Dubroca T; Moyant K; Hummel RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():149-55. PubMed ID: 23299022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TAML activator/peroxide-catalyzed facile oxidative degradation of the persistent explosives trinitrotoluene and trinitrobenzene in micellar solutions.
    Kundu S; Chanda A; Khetan SK; Ryabov AD; Collins TJ
    Environ Sci Technol; 2013 May; 47(10):5319-26. PubMed ID: 23586823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water.
    Kalderis D; Hawthorne SB; Clifford AA; Gidarakos E
    J Hazard Mater; 2008 Nov; 159(2-3):329-34. PubMed ID: 18384944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of explosives-related compounds using nickel catalysts.
    Fuller ME; Schaefer CE; Lowey JM
    Chemosphere; 2007 Mar; 67(3):419-27. PubMed ID: 17109928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of 2,4,6-trinitrotoluene and its degradation products in a soil organic matter two-phase system.
    Eriksson J; Skyllberg U
    J Environ Qual; 2001; 30(6):2053-61. PubMed ID: 11790013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.