These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 18063370)
21. In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications. Greenhalgh K; Turos E Nanomedicine; 2009 Mar; 5(1):46-54. PubMed ID: 18824416 [TBL] [Abstract][Full Text] [Related]
23. Discovery, characterization and comparison of inhibitors of Bacillus anthracis and Staphylococcus aureus replicative DNA helicases. Aiello D; Barnes MH; Biswas EE; Biswas SB; Gu S; Williams JD; Bowlin TL; Moir DT Bioorg Med Chem; 2009 Jul; 17(13):4466-76. PubMed ID: 19477652 [TBL] [Abstract][Full Text] [Related]
24. Direct diazo-transfer reaction on beta-lactam: synthesis and preliminary biological activities of 6-triazolylpenicillanic acids. Chen PC; Wharton RE; Patel PA; Oyelere AK Bioorg Med Chem; 2007 Dec; 15(23):7288-300. PubMed ID: 17855098 [TBL] [Abstract][Full Text] [Related]
25. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Arasoglu T; Derman S; Mansuroglu B Nanotechnology; 2016 Jan; 27(2):025103. PubMed ID: 26629915 [TBL] [Abstract][Full Text] [Related]
26. Stable poly(St-co-BA) nanoemulsion polymerization for high performance antibacterial coatings in the presence of dioctyldimethylammonium chloride. Chen Z; Sun X; Shen Y; Ni H; Chai S; Zou Q; Zhang X; Zhang J Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():234-242. PubMed ID: 25686944 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. Santiago C; Pang EL; Lim KH; Loh HS; Ting KN BMC Complement Altern Med; 2015 Jun; 15():178. PubMed ID: 26060128 [TBL] [Abstract][Full Text] [Related]
28. Oligochlorophens are potent inhibitors of Bacillus anthracis. Foss MH; Weibel DB Antimicrob Agents Chemother; 2010 Sep; 54(9):3988-90. PubMed ID: 20566769 [TBL] [Abstract][Full Text] [Related]
29. Nanotechnology as a therapeutic tool to combat microbial resistance. Pelgrift RY; Friedman AJ Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192 [TBL] [Abstract][Full Text] [Related]
30. Antibacterial activity of stilbene oligomers against vancomycin-resistant Enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) and their synergism with antibiotics. Sakagami Y; Sawabe A; Komemushi S; All Z; Tanaka T; Iliya I; Iinuma M Biocontrol Sci; 2007 Mar; 12(1):7-14. PubMed ID: 17408003 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole and 1,2,4-triazole compounds having a D,L-methionine moiety. Pintilie O; Profire L; Sunel V; Popa M; Pui A Molecules; 2007 Jan; 12(1):103-13. PubMed ID: 17693957 [TBL] [Abstract][Full Text] [Related]
32. Synergistic effect of polyoxotungstates in combination with beta-lactam antibiotics on antibacterial activity against methicillin-resistant Staphylococcus aureus. Yamase T; Fukuda N; Tajima Y Biol Pharm Bull; 1996 Mar; 19(3):459-65. PubMed ID: 8924919 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Medina Cruz D; Mi G; Webster TJ J Biomed Mater Res A; 2018 May; 106(5):1400-1412. PubMed ID: 29356322 [TBL] [Abstract][Full Text] [Related]
34. Effect of combination of oxacillin and non-beta-lactam antibiotics on methicillin-resistant Staphylococcus aureus. Komatsuzawa H; Suzuki J; Sugai M; Miyake Y; Suginaka H J Antimicrob Chemother; 1994 Jun; 33(6):1155-63. PubMed ID: 7928809 [TBL] [Abstract][Full Text] [Related]
35. Discovery and characterization of aryl isonitriles as a new class of compounds versus methicillin- and vancomycin-resistant Staphylococcus aureus. Davis DC; Mohammad H; Kyei-Baffour K; Younis W; Creemer CN; Seleem MN; Dai M Eur J Med Chem; 2015 Aug; 101():384-90. PubMed ID: 26164843 [TBL] [Abstract][Full Text] [Related]
36. Antibiotic susceptibility of isolates of Bacillus anthracis, a bacterial pathogen with the potential to be used in biowarfare. Jones ME; Goguen J; Critchley IA; Draghi DC; Karlowsky JA; Sahm DF; Porschen R; Patra G; DelVecchio VG Clin Microbiol Infect; 2003 Sep; 9(9):984-6. PubMed ID: 14616693 [TBL] [Abstract][Full Text] [Related]
37. β-Lactam Antibiotics with a High Affinity for PBP2 Act Synergistically with the FtsZ-Targeting Agent TXA707 against Methicillin-Resistant Staphylococcus aureus. Ferrer-González E; Kaul M; Parhi AK; LaVoie EJ; Pilch DS Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28630190 [TBL] [Abstract][Full Text] [Related]
38. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Gustafsson TN; Osman H; Werngren J; Hoffner S; Engman L; Holmgren A Biochim Biophys Acta; 2016 Jun; 1860(6):1265-71. PubMed ID: 26971857 [TBL] [Abstract][Full Text] [Related]
39. S-3578, a new broad spectrum parenteral cephalosporin exhibiting potent activity against both methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Synthesis and structure-activity relationships. Yoshizawa H; Itani H; Ishikura K; Irie T; Yokoo K; Kubota T; Minami K; Iwaki T; Miwa H; Nishitani Y J Antibiot (Tokyo); 2002 Nov; 55(11):975-92. PubMed ID: 12546419 [TBL] [Abstract][Full Text] [Related]
40. Natural lipopeptide antibiotic tripropeptin C revitalizes and synergistically potentiates the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Hashizume H; Takahashi Y; Harada S; Nomoto A J Antibiot (Tokyo); 2015 Jun; 68(6):373-8. PubMed ID: 25586024 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]