These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 18063373)
1. Conception of myeloperoxidase inhibitors derived from flufenamic acid by computational docking and structure modification. Van Antwerpen P; Prévost M; Zouaoui-Boudjeltia K; Babar S; Legssyer I; Moreau P; Moguilevsky N; Vanhaeverbeek M; Ducobu J; Nève J; Dufrasne F Bioorg Med Chem; 2008 Feb; 16(4):1702-20. PubMed ID: 18063373 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs: flufenamic acid and its 5-chloro-derivative directly interact with a recombinant human myeloperoxidase to inhibit the synthesis of hypochlorous acid. Van Antwerpen P; Dufrasne F; Lequeux M; Boudjeltia KZ; Lessgyer I; Babar S; Moreau P; Moguilevsky N; Vanhaeverbeek M; Ducobu J; Nève J Eur J Pharmacol; 2007 Sep; 570(1-3):235-43. PubMed ID: 17610876 [TBL] [Abstract][Full Text] [Related]
3. Thiol-containing molecules interact with the myeloperoxidase/H2O2/chloride system to inhibit LDL oxidation. Van Antwerpen P; Boudjeltia KZ; Babar S; Legssyer I; Moreau P; Moguilevsky N; Vanhaeverbeek M; Ducobu J; Nève J Biochem Biophys Res Commun; 2005 Nov; 337(1):82-8. PubMed ID: 16171780 [TBL] [Abstract][Full Text] [Related]
4. Structure-based design, synthesis, and pharmacological evaluation of 3-(aminoalkyl)-5-fluoroindoles as myeloperoxidase inhibitors. Soubhye J; Prévost M; Van Antwerpen P; Zouaoui Boudjeltia K; Rousseau A; Furtmüller PG; Obinger C; Vanhaeverbeek M; Ducobu J; Néve J; Gelbcke M; Dufrasne FO J Med Chem; 2010 Dec; 53(24):8747-59. PubMed ID: 21090682 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a screening procedure for the assessment of inhibition using a recombinant enzyme. Van Antwerpen P; Moreau P; Zouaoui Boudjeltia K; Babar S; Dufrasne F; Moguilevsky N; Vanhaeverbeek M; Ducobu J; Nève J Talanta; 2008 Apr; 75(2):503-10. PubMed ID: 18371913 [TBL] [Abstract][Full Text] [Related]
6. Captopril inhibits the oxidative modification of apolipoprotein B-100 caused by myeloperoxydase in a comparative in vitro assay of angiotensin converting enzyme inhibitors. Van Antwerpen P; Legssyer I; Zouaoui Boudjeltia K; Babar S; Moreau P; Moguilevsky N; Vanhaeverbeek M; Ducobu J; Nève J Eur J Pharmacol; 2006 May; 537(1-3):31-6. PubMed ID: 16631159 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of new scaffolds of myeloperoxidase inhibitors by rational design combined with high-throughput virtual screening. Aldib I; Soubhye J; Zouaoui Boudjeltia K; Vanhaeverbeek M; Rousseau A; Furtmüller PG; Obinger C; Dufrasne F; Nève J; Van Antwerpen P; Prévost M J Med Chem; 2012 Aug; 55(16):7208-18. PubMed ID: 22793255 [TBL] [Abstract][Full Text] [Related]
8. Melatonin is a potent inhibitor for myeloperoxidase. Galijasevic S; Abdulhamid I; Abu-Soud HM Biochemistry; 2008 Feb; 47(8):2668-77. PubMed ID: 18237195 [TBL] [Abstract][Full Text] [Related]
9. Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design. Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Lehner I; Jakopitsch C; Arnhold J; Obinger C Biochem Pharmacol; 2005 Apr; 69(8):1149-57. PubMed ID: 15794935 [TBL] [Abstract][Full Text] [Related]
10. Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. Loke WM; Proudfoot JM; McKinley AJ; Needs PW; Kroon PA; Hodgson JM; Croft KD J Agric Food Chem; 2008 May; 56(10):3609-15. PubMed ID: 18454540 [TBL] [Abstract][Full Text] [Related]
11. The relationship between LDL oxidation and macrophage myeloperoxidase activity. Wu J; Liu Y; Li X; Chen L; Xia L; Hong J Chin Med J (Engl); 2003 May; 116(5):791-3. PubMed ID: 12875704 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the mechanism by which tryptophan analogs inhibit human myeloperoxidase. Sliskovic I; Abdulhamid I; Sharma M; Abu-Soud HM Free Radic Biol Med; 2009 Oct; 47(7):1005-13. PubMed ID: 19596067 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the binding and reactivity of plant and mammalian peroxidases to indole derivatives by computational docking. Hallingbäck HR; Gabdoulline RR; Wade RC Biochemistry; 2006 Mar; 45(9):2940-50. PubMed ID: 16503648 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of some 2(3H)-benzoxazolone derivatives and their in-vitro effects on human leukocyte myeloperoxidase activity. Soyer Z; Bas M; Pabuccuoglu A; Pabuccuoglu V Arch Pharm (Weinheim); 2005 Sep; 338(9):405-10. PubMed ID: 16143956 [TBL] [Abstract][Full Text] [Related]
15. Novel bis-arylalkylamines as myeloperoxidase inhibitors: Design, synthesis, and structure-activity relationship study. Aldib I; Gelbcke M; Soubhye J; Prévost M; Furtmüller PG; Obinger C; Elfving B; Alard IC; Roos G; Delporte C; Berger G; Dufour D; Zouaoui Boudjeltia K; Nève J; Dufrasne F; Van Antwerpen P Eur J Med Chem; 2016 Nov; 123():746-762. PubMed ID: 27537923 [TBL] [Abstract][Full Text] [Related]
16. Structure-activity relationships and binding mode in the human acetylcholinesterase active site of pseudo-irreversible inhibitors related to xanthostigmine. Rizzo S; Cavalli A; Ceccarini L; Bartolini M; Belluti F; Bisi A; Andrisano V; Recanatini M; Rampa A ChemMedChem; 2009 Apr; 4(4):670-9. PubMed ID: 19222043 [TBL] [Abstract][Full Text] [Related]
17. Betanin inhibits the myeloperoxidase/nitrite-induced oxidation of human low-density lipoproteins. Allegra M; Tesoriere L; Livrea MA Free Radic Res; 2007 Mar; 41(3):335-41. PubMed ID: 17364963 [TBL] [Abstract][Full Text] [Related]
18. Methoxyphenol derivatives as reversible inhibitors of myeloperoxidase as potential antiatherosclerotic agents. Jayaraj P; Narasimhulu CA; Maiseyeu A; Durairaj R; Rao S; Rajagopalan S; Parthasarathy S; Desikan R Future Med Chem; 2020 Jan; 12(2):95-110. PubMed ID: 31769316 [No Abstract] [Full Text] [Related]
19. Rational drug design applied to myeloperoxidase inhibition. Van Antwerpen P; Zouaoui Boudjeltia K Free Radic Res; 2015 Jun; 49(6):711-20. PubMed ID: 25788127 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis, and structure-activity relationship studies of novel 3-alkylindole derivatives as selective and highly potent myeloperoxidase inhibitors. Soubhye J; Aldib I; Elfving B; Gelbcke M; Furtmüller PG; Podrecca M; Conotte R; Colet JM; Rousseau A; Reye F; Sarakbi A; Vanhaeverbeek M; Kauffmann JM; Obinger C; Nève J; Prévost M; Zouaoui Boudjeltia K; Dufrasne F; Van Antwerpen P J Med Chem; 2013 May; 56(10):3943-58. PubMed ID: 23581551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]