These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18063560)

  • 1. Human medial frontal cortex activity predicts learning from errors.
    Hester R; Barre N; Murphy K; Silk TJ; Mattingley JB
    Cereb Cortex; 2008 Aug; 18(8):1933-40. PubMed ID: 18063560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When goals are missed: dealing with self-generated and externally induced failure.
    Ullsperger M; Nittono H; von Cramon DY
    Neuroimage; 2007 Apr; 35(3):1356-64. PubMed ID: 17350291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning from errors: error-related neural activity predicts improvements in future inhibitory control performance.
    Hester R; Madeley J; Murphy K; Mattingley JB
    J Neurosci; 2009 Jun; 29(22):7158-65. PubMed ID: 19494138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Punishing an error improves learning: the influence of punishment magnitude on error-related neural activity and subsequent learning.
    Hester R; Murphy K; Brown FL; Skilleter AJ
    J Neurosci; 2010 Nov; 30(46):15600-7. PubMed ID: 21084615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically determined differences in learning from errors.
    Klein TA; Neumann J; Reuter M; Hennig J; von Cramon DY; Ullsperger M
    Science; 2007 Dec; 318(5856):1642-5. PubMed ID: 18063800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive information and error processing: the role of medial-frontal cortex during motor control.
    Krigolson OE; Holroyd CB
    Psychophysiology; 2007 Jul; 44(4):586-95. PubMed ID: 17437555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced error-related activation in two anterior cingulate circuits is related to impaired performance in schizophrenia.
    Polli FE; Barton JJ; Thakkar KN; Greve DN; Goff DC; Rauch SL; Manoach DS
    Brain; 2008 Apr; 131(Pt 4):971-86. PubMed ID: 18158315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the medial frontal cortex in cognitive control.
    Ridderinkhof KR; Ullsperger M; Crone EA; Nieuwenhuis S
    Science; 2004 Oct; 306(5695):443-7. PubMed ID: 15486290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for hierarchical error processing in the human brain.
    Krigolson OE; Holroyd CB
    Neuroscience; 2006; 137(1):13-7. PubMed ID: 16343779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frontal oscillatory dynamics predict feedback learning and action adjustment.
    van de Vijver I; Ridderinkhof KR; Cohen MX
    J Cogn Neurosci; 2011 Dec; 23(12):4106-21. PubMed ID: 21812570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error-likelihood prediction in the medial frontal cortex: a critical evaluation.
    Nieuwenhuis S; Schweizer TS; Mars RB; Botvinick MM; Hajcak G
    Cereb Cortex; 2007 Jul; 17(7):1570-81. PubMed ID: 16956979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error detection and the use of internal and external error indicators: an investigation of the first-indicator hypothesis.
    Stahl J
    Int J Psychophysiol; 2010 Jul; 77(1):43-52. PubMed ID: 20417668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot study of response inhibition and error processing in the posterior medial prefrontal cortex in healthy youth.
    Fitzgerald KD; Zbrozek CD; Welsh RC; Britton JC; Liberzon I; Taylor SF
    J Child Psychol Psychiatry; 2008 Sep; 49(9):986-94. PubMed ID: 18422547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of performance-monitoring function in the posterior medial frontal cortex.
    Fitzgerald KD; Perkins SC; Angstadt M; Johnson T; Stern ER; Welsh RC; Taylor SF
    Neuroimage; 2010 Feb; 49(4):3463-73. PubMed ID: 19913101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.
    Hochman EY; Orr JM; Gehring WJ
    Cereb Cortex; 2014 Feb; 24(2):414-25. PubMed ID: 23064106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inferior frontal cortex in artificial syntax processing: an rTMS study.
    Uddén J; Folia V; Forkstam C; Ingvar M; Fernandez G; Overeem S; van Elswijk G; Hagoort P; Petersson KM
    Brain Res; 2008 Aug; 1224():69-78. PubMed ID: 18617159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory.
    Brovelli A; Laksiri N; Nazarian B; Meunier M; Boussaoud D
    Cereb Cortex; 2008 Jul; 18(7):1485-95. PubMed ID: 18033767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA.
    Tamaki M; Matsuoka T; Nittono H; Hori T
    Clin Neurophysiol; 2009 May; 120(5):878-86. PubMed ID: 19376746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of human frontal cortex to surprising events are predicted by formal associative learning theory.
    Fletcher PC; Anderson JM; Shanks DR; Honey R; Carpenter TA; Donovan T; Papadakis N; Bullmore ET
    Nat Neurosci; 2001 Oct; 4(10):1043-8. PubMed ID: 11559855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.