BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18063560)

  • 1. Human medial frontal cortex activity predicts learning from errors.
    Hester R; Barre N; Murphy K; Silk TJ; Mattingley JB
    Cereb Cortex; 2008 Aug; 18(8):1933-40. PubMed ID: 18063560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When goals are missed: dealing with self-generated and externally induced failure.
    Ullsperger M; Nittono H; von Cramon DY
    Neuroimage; 2007 Apr; 35(3):1356-64. PubMed ID: 17350291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning from errors: error-related neural activity predicts improvements in future inhibitory control performance.
    Hester R; Madeley J; Murphy K; Mattingley JB
    J Neurosci; 2009 Jun; 29(22):7158-65. PubMed ID: 19494138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Punishing an error improves learning: the influence of punishment magnitude on error-related neural activity and subsequent learning.
    Hester R; Murphy K; Brown FL; Skilleter AJ
    J Neurosci; 2010 Nov; 30(46):15600-7. PubMed ID: 21084615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically determined differences in learning from errors.
    Klein TA; Neumann J; Reuter M; Hennig J; von Cramon DY; Ullsperger M
    Science; 2007 Dec; 318(5856):1642-5. PubMed ID: 18063800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive information and error processing: the role of medial-frontal cortex during motor control.
    Krigolson OE; Holroyd CB
    Psychophysiology; 2007 Jul; 44(4):586-95. PubMed ID: 17437555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced error-related activation in two anterior cingulate circuits is related to impaired performance in schizophrenia.
    Polli FE; Barton JJ; Thakkar KN; Greve DN; Goff DC; Rauch SL; Manoach DS
    Brain; 2008 Apr; 131(Pt 4):971-86. PubMed ID: 18158315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the medial frontal cortex in cognitive control.
    Ridderinkhof KR; Ullsperger M; Crone EA; Nieuwenhuis S
    Science; 2004 Oct; 306(5695):443-7. PubMed ID: 15486290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for hierarchical error processing in the human brain.
    Krigolson OE; Holroyd CB
    Neuroscience; 2006; 137(1):13-7. PubMed ID: 16343779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frontal oscillatory dynamics predict feedback learning and action adjustment.
    van de Vijver I; Ridderinkhof KR; Cohen MX
    J Cogn Neurosci; 2011 Dec; 23(12):4106-21. PubMed ID: 21812570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error-likelihood prediction in the medial frontal cortex: a critical evaluation.
    Nieuwenhuis S; Schweizer TS; Mars RB; Botvinick MM; Hajcak G
    Cereb Cortex; 2007 Jul; 17(7):1570-81. PubMed ID: 16956979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error detection and the use of internal and external error indicators: an investigation of the first-indicator hypothesis.
    Stahl J
    Int J Psychophysiol; 2010 Jul; 77(1):43-52. PubMed ID: 20417668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot study of response inhibition and error processing in the posterior medial prefrontal cortex in healthy youth.
    Fitzgerald KD; Zbrozek CD; Welsh RC; Britton JC; Liberzon I; Taylor SF
    J Child Psychol Psychiatry; 2008 Sep; 49(9):986-94. PubMed ID: 18422547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of performance-monitoring function in the posterior medial frontal cortex.
    Fitzgerald KD; Perkins SC; Angstadt M; Johnson T; Stern ER; Welsh RC; Taylor SF
    Neuroimage; 2010 Feb; 49(4):3463-73. PubMed ID: 19913101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.
    Hochman EY; Orr JM; Gehring WJ
    Cereb Cortex; 2014 Feb; 24(2):414-25. PubMed ID: 23064106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inferior frontal cortex in artificial syntax processing: an rTMS study.
    Uddén J; Folia V; Forkstam C; Ingvar M; Fernandez G; Overeem S; van Elswijk G; Hagoort P; Petersson KM
    Brain Res; 2008 Aug; 1224():69-78. PubMed ID: 18617159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory.
    Brovelli A; Laksiri N; Nazarian B; Meunier M; Boussaoud D
    Cereb Cortex; 2008 Jul; 18(7):1485-95. PubMed ID: 18033767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA.
    Tamaki M; Matsuoka T; Nittono H; Hori T
    Clin Neurophysiol; 2009 May; 120(5):878-86. PubMed ID: 19376746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of human frontal cortex to surprising events are predicted by formal associative learning theory.
    Fletcher PC; Anderson JM; Shanks DR; Honey R; Carpenter TA; Donovan T; Papadakis N; Bullmore ET
    Nat Neurosci; 2001 Oct; 4(10):1043-8. PubMed ID: 11559855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.