BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18063706)

  • 61. Aspirin prevents NF-κB activation and CDX2 expression stimulated by acid and bile salts in oesophageal squamous cells of patients with Barrett's oesophagus.
    Huo X; Zhang X; Yu C; Cheng E; Zhang Q; Dunbar KB; Pham TH; Lynch JP; Wang DH; Bresalier RS; Spechler SJ; Souza RF
    Gut; 2018 Apr; 67(4):606-615. PubMed ID: 28442495
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The pathogenesis of Barrett's esophagus: secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophageal cells.
    Hu Y; Williams VA; Gellersen O; Jones C; Watson TJ; Peters JH
    J Gastrointest Surg; 2007 Jul; 11(7):827-34. PubMed ID: 17458588
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cancer-related inflammation and Barrett's carcinogenesis: interleukin-6 and STAT3 mediate apoptotic resistance in transformed Barrett's cells.
    Zhang HY; Zhang Q; Zhang X; Yu C; Huo X; Cheng E; Wang DH; Spechler SJ; Souza RF
    Am J Physiol Gastrointest Liver Physiol; 2011 Mar; 300(3):G454-60. PubMed ID: 21148399
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Secretory Phospholipase A
    Gergen AK; Jarrett MJ; Li A; White AM; Meng X; Fullerton DA; Weyant MJ
    J Surg Res; 2021 Mar; 259():562-568. PubMed ID: 33261858
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Expression profile and cellular localizations of mucin proteins, CK7, and cytoplasmic p27 in Barrett's esophagus and esophageal adenocarcinoma.
    Ozcan HEA; Anuk T; Ozden O
    Adv Med Sci; 2018 Sep; 63(2):296-300. PubMed ID: 29803118
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bile acid reflux contributes to development of esophageal adenocarcinoma via activation of phosphatidylinositol-specific phospholipase Cgamma2 and NADPH oxidase NOX5-S.
    Hong J; Behar J; Wands J; Resnick M; Wang LJ; Delellis RA; Lambeth D; Cao W
    Cancer Res; 2010 Feb; 70(3):1247-55. PubMed ID: 20086178
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bile acids increase levels of microRNAs 221 and 222, leading to degradation of CDX2 during esophageal carcinogenesis.
    Matsuzaki J; Suzuki H; Tsugawa H; Watanabe M; Hossain S; Arai E; Saito Y; Sekine S; Akaike T; Kanai Y; Mukaisho K; Auwerx J; Hibi T
    Gastroenterology; 2013 Dec; 145(6):1300-11. PubMed ID: 23933602
    [TBL] [Abstract][Full Text] [Related]  

  • 68. NADPH oxidase NOX5-S and nuclear factor κB1 mediate acid-induced microsomal prostaglandin E synthase-1 expression in Barrett's esophageal adenocarcinoma cells.
    Zhou X; Li D; Resnick MB; Wands J; Cao W
    Mol Pharmacol; 2013 May; 83(5):978-90. PubMed ID: 23439561
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Barrett's esophagus: progression to adenocarcinoma and markers.
    Fang D; Das KM; Cao W; Malhotra U; Triadafilopoulos G; Najarian RM; Hardie LJ; Lightdale CJ; Beales IL; Felix VN; Schneider PM; Bellizzi AM
    Ann N Y Acad Sci; 2011 Sep; 1232():210-29. PubMed ID: 21950815
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Frequent occurrence of mitochondrial DNA mutations in Barrett's metaplasia without the presence of dysplasia.
    Lee S; Han MJ; Lee KS; Back SC; Hwang D; Kim HY; Shin JH; Suh SP; Ryang DW; Kim HR; Shin MG
    PLoS One; 2012; 7(5):e37571. PubMed ID: 22629421
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of adiponectin and ghrelin on apoptosis of Barrett adenocarcinoma cell line.
    Konturek PC; Burnat G; Rau T; Hahn EG; Konturek S
    Dig Dis Sci; 2008 Mar; 53(3):597-605. PubMed ID: 17763959
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells.
    Peng D; Belkhiri A; Hu T; Chaturvedi R; Asim M; Wilson KT; Zaika A; El-Rifai W
    Gut; 2012 Sep; 61(9):1250-60. PubMed ID: 22157330
    [TBL] [Abstract][Full Text] [Related]  

  • 73. From reflux esophagitis to Barrett's esophagus and esophageal adenocarcinoma.
    Wang RH
    World J Gastroenterol; 2015 May; 21(17):5210-9. PubMed ID: 25954094
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular mechanisms of acid exposure in Barrett's esophagus.
    Souza RF
    Inflammopharmacology; 2007 Jun; 15(3):95-100. PubMed ID: 19847948
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inflammation and Barrett's carcinogenesis.
    Poehlmann A; Kuester D; Malfertheiner P; Guenther T; Roessner A
    Pathol Res Pract; 2012 May; 208(5):269-80. PubMed ID: 22541897
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Correlation of ultrastructural aberrations with dysplasia and flow cytometric abnormalities in Barrett's epithelium.
    Levine DS; Reid BJ; Haggitt RC; Rubin CE; Rabinovitch PS
    Gastroenterology; 1989 Feb; 96(2 Pt 1):355-67. PubMed ID: 2910757
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Expression of bile acid transporting proteins in Barrett's esophagus and esophageal adenocarcinoma.
    Dvorak K; Watts GS; Ramsey L; Holubec H; Payne CM; Bernstein C; Jenkins GJ; Sampliner RE; Prasad A; Garewal HS; Bernstein H
    Am J Gastroenterol; 2009 Feb; 104(2):302-9. PubMed ID: 19174784
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hiatal hernia size, Barrett's length, and severity of acid reflux are all risk factors for esophageal adenocarcinoma.
    Avidan B; Sonnenberg A; Schnell TG; Chejfec G; Metz A; Sontag SJ
    Am J Gastroenterol; 2002 Aug; 97(8):1930-6. PubMed ID: 12190156
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular biology of Barrett's cancer.
    Atherfold PA; Jankowski JA
    Best Pract Res Clin Gastroenterol; 2006; 20(5):813-27. PubMed ID: 16997163
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Activation of NADPH oxidases leads to DNA damage in esophageal cells.
    Bhardwaj V; Gokulan RC; Horvat A; Yermalitskaya L; Korolkova O; Washington KM; El-Rifai W; Dikalov SI; Zaika AI
    Sci Rep; 2017 Aug; 7(1):9956. PubMed ID: 28855537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.