These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 18063724)
1. Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters. Pajor AM; Randolph KM; Kerner SA; Smith CD J Pharmacol Exp Ther; 2008 Mar; 324(3):985-91. PubMed ID: 18063724 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG. Chang HC; Yang SF; Huang CC; Lin TS; Liang PH; Lin CJ; Hsu LC Mol Biosyst; 2013 Aug; 9(8):2010-20. PubMed ID: 23657801 [TBL] [Abstract][Full Text] [Related]
3. Structural selectivity of human SGLT inhibitors. Hummel CS; Lu C; Liu J; Ghezzi C; Hirayama BA; Loo DD; Kepe V; Barrio JR; Wright EM Am J Physiol Cell Physiol; 2012 Jan; 302(2):C373-82. PubMed ID: 21940664 [TBL] [Abstract][Full Text] [Related]
4. D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Tyagi NK; Kumar A; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Nov; 46(47):13616-28. PubMed ID: 17983207 [TBL] [Abstract][Full Text] [Related]
5. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Hummel CS; Lu C; Loo DD; Hirayama BA; Voss AA; Wright EM Am J Physiol Cell Physiol; 2011 Jan; 300(1):C14-21. PubMed ID: 20980548 [TBL] [Abstract][Full Text] [Related]
9. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2. Kanwal A; Singh SP; Grover P; Banerjee SK Anal Biochem; 2012 Oct; 429(1):70-5. PubMed ID: 22796500 [TBL] [Abstract][Full Text] [Related]
10. Sodium-independent low-affinity D-glucose transport by human sodium/D-glucose cotransporter 1: critical role of tryptophan 561. Kumar A; Tyagi NK; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Mar; 46(10):2758-66. PubMed ID: 17288452 [TBL] [Abstract][Full Text] [Related]
11. C-aryl glucosides substituted at the 4'-position as potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Xu B; Feng Y; Cheng H; Song Y; Lv B; Wu Y; Wang C; Li S; Xu M; Du J; Peng K; Dong J; Zhang W; Zhang T; Zhu L; Ding H; Sheng Z; Welihinda A; Roberge JY; Seed B; Chen Y Bioorg Med Chem Lett; 2011 Aug; 21(15):4465-70. PubMed ID: 21737266 [TBL] [Abstract][Full Text] [Related]
12. Competitive inhibition of SGLT2 by tofogliflozin or phlorizin induces urinary glucose excretion through extending splay in cynomolgus monkeys. Nagata T; Suzuki M; Fukazawa M; Honda K; Yamane M; Yoshida A; Azabu H; Kitamura H; Toyota N; Suzuki Y; Kawabe Y Am J Physiol Renal Physiol; 2014 Jun; 306(12):F1520-33. PubMed ID: 24761001 [TBL] [Abstract][Full Text] [Related]
13. SGLT inhibitors as new therapeutic tools in the treatment of diabetes. Kinne RK; Castaneda F Handb Exp Pharmacol; 2011; (203):105-26. PubMed ID: 21484569 [TBL] [Abstract][Full Text] [Related]
14. Binding of phlorizin to the isolated C-terminal extramembranous loop of the Na+/glucose cotransporter assessed by intrinsic tryptophan fluorescence. Xia X; Lin JT; Kinne RK Biochemistry; 2003 May; 42(20):6115-20. PubMed ID: 12755613 [TBL] [Abstract][Full Text] [Related]
15. 5a-Carba-β-D-glucopyranose derivatives as novel sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Ohtake Y; Sato T; Matsuoka H; Nishimoto M; Taka N; Takano K; Yamamoto K; Ohmori M; Higuchi T; Murakata M; Kobayashi T; Morikawa K; Shimma N; Suzuki M; Hagita H; Ozawa K; Yamaguchi K; Kato M; Ikeda S Bioorg Med Chem; 2011 Sep; 19(18):5334-41. PubMed ID: 21873071 [TBL] [Abstract][Full Text] [Related]
16. C-Aryl 5a-carba-β-d-glucopyranosides as novel sodium glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Ohtake Y; Sato T; Matsuoka H; Kobayashi T; Nishimoto M; Taka N; Takano K; Yamamoto K; Ohmori M; Higuchi T; Murakata M; Morikawa K; Shimma N; Suzuki M; Hagita H; Ozawa K; Yamaguchi K; Kato M; Ikeda S Bioorg Med Chem; 2012 Jul; 20(13):4117-27. PubMed ID: 22652255 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and biological evaluation of novel C-aryl d-glucofuranosides as sodium-dependent glucose co-transporter 2 inhibitors. Lin TS; Liw YW; Song JS; Hsieh TC; Yeh HW; Hsu LC; Lin CJ; Wu SH; Liang PH Bioorg Med Chem; 2013 Nov; 21(21):6282-91. PubMed ID: 24071445 [TBL] [Abstract][Full Text] [Related]
18. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors. Blaschek W Planta Med; 2017 Aug; 83(12-13):985-993. PubMed ID: 28395363 [TBL] [Abstract][Full Text] [Related]
19. In Vitro Pharmacological Profile of Ipragliflozin, a Sodium Glucose Co-transporter 2 Inhibitor. Takasu T; Yokono M; Tahara A; Takakura S Biol Pharm Bull; 2019; 42(3):507-511. PubMed ID: 30828082 [TBL] [Abstract][Full Text] [Related]
20. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Quick M; Tomasevic J; Wright EM Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]