BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18064019)

  • 1. Profile: Hugh Herr.
    Willyard C
    Nat Med; 2007 Dec; 13(12):1395. PubMed ID: 18064019
    [No Abstract]   [Full Text] [Related]  

  • 2. Subject-specific responses to an adaptive ankle prosthesis during incline walking.
    Lamers EP; Eveld ME; Zelik KE
    J Biomech; 2019 Oct; 95():109273. PubMed ID: 31431348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical and theoretical considerations in the application in the development of clinical gait analysis.
    Andriacchi TP
    Biomed Mater Eng; 1998; 8(3-4):137-43. PubMed ID: 10065880
    [No Abstract]   [Full Text] [Related]  

  • 4. History and fundamentals of gait analysis.
    Paul JP
    Biomed Mater Eng; 1998; 8(3-4):123-35. PubMed ID: 10065879
    [No Abstract]   [Full Text] [Related]  

  • 5. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design optimization of an above-knee prosthesis based on the kinematics of gait.
    Pejhan S; Farahmand F; Parnianpour M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4274-7. PubMed ID: 19163657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2504-7. PubMed ID: 25570499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical differences between two exoprosthetic hip joint systems during level walking.
    Ludwigs E; Bellmann M; Schmalz T; Blumentritt S
    Prosthet Orthot Int; 2010 Dec; 34(4):449-60. PubMed ID: 20681929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of physical capacities of males with transtibial amputation on gait adjustments on sloped surfaces.
    Langlois K; Villa C; Bonnet X; Lavaste F; Fodé P; Martinet N; Pillet H
    J Rehabil Res Dev; 2014; 51(2):193-200. PubMed ID: 24933718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic optimization of transfemoral prosthesis during swing phase with residual limb model.
    Suzuki Y
    Prosthet Orthot Int; 2010 Dec; 34(4):428-38. PubMed ID: 20521999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation.
    Vrieling AH; van Keeken HG; Schoppen T; Hof AL; Otten B; Halbertsma JP; Postema K
    Clin Rehabil; 2009 Jul; 23(7):659-71. PubMed ID: 19470553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
    Rohani F; Richter H; van den Bogert AJ
    PLoS One; 2017; 12(11):e0188266. PubMed ID: 29149213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps.
    Lura DJ; Wernke MM; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Clin Biomech (Bristol, Avon); 2015 Feb; 30(2):175-81. PubMed ID: 25537443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical Parameters of Gait after Unilateral Above-knee Amputation. Current State of Research.
    Kowal M; Paprocka Borowicz M; Starczewska A; Rutkowska-Kucharska A
    Ortop Traumatol Rehabil; 2018 Aug; 20(4):245-256. PubMed ID: 30648653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot.
    Heitzmann DWW; Salami F; De Asha AR; Block J; Putz C; Wolf SI; Alimusaj M
    Gait Posture; 2018 Jul; 64():174-180. PubMed ID: 29913354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical evaluation of a prototype foot/ankle prosthesis.
    Quesada PM; Pitkin M; Colvin J
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):156-9. PubMed ID: 10779119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toe clearance when walking in people with unilateral transtibial amputation: effects of passive hydraulic ankle.
    Johnson L; De Asha AR; Munjal R; Kulkarni J; Buckley JG
    J Rehabil Res Dev; 2014; 51(3):429-37. PubMed ID: 25019665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved design and development of a functional moulded prosthetic foot.
    Narayanan G; Gnanasundaram S; Ranganathan M; Ranganathan R; Gopalakrishna G; Das BN; Mandal AB
    Disabil Rehabil Assist Technol; 2016; 11(5):407-12. PubMed ID: 27054411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Smooth Gait Transitioning for Active Lower Limb Prosthetics.
    Boudali AM; Sinclair PJ; Manchester IR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2424-2429. PubMed ID: 31946388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.