BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18064019)

  • 21. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation.
    Fuenzalida Squella SA; Kannenberg A; Brandão Benetti Â
    Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact on gait biomechanics of using an active variable impedance prosthetic knee.
    Williams MR; D'Andrea S; Herr HM
    J Neuroeng Rehabil; 2016 Jun; 13(1):54. PubMed ID: 27283318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?
    D'Andrea S; Wilhelm N; Silverman AK; Grabowski AM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3044-54. PubMed ID: 24781926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative evaluation of the Adaptive knee and Catech knee joints: a preliminary study.
    Jepson F; Datta D; Harris I; Heller B; Howitt J; McLean J
    Prosthet Orthot Int; 2008 Mar; 32(1):84-92. PubMed ID: 18330807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term clinical evaluation of the automatic stance-phase lock-controlled prosthetic knee joint in young adults with unilateral above-knee amputation.
    Andrysek J; Wright FV; Rotter K; Garcia D; Valdebenito R; Mitchell CA; Rozbaczylo C; Cubillos R
    Disabil Rehabil Assist Technol; 2017 May; 12(4):378-384. PubMed ID: 27376843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses.
    Hansen AH; Childress DS; Knox EH
    Prosthet Orthot Int; 2000 Dec; 24(3):205-15. PubMed ID: 11195355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of a powered ankle prosthesis with dynamic joint alignment.
    LaPre AK; Umberger BR; Sup F
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1618-21. PubMed ID: 25570282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.
    Fey NP; Klute GK; Neptune RR
    J Biomech Eng; 2012 Nov; 134(11):111005. PubMed ID: 23387787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses.
    Russell Esposito E; Aldridge Whitehead JM; Wilken JM
    Prosthet Orthot Int; 2016 Jun; 40(3):311-9. PubMed ID: 25628378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.
    Abtahi SMA; Jamshidi N; Ghaziasgar A
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):201-207. PubMed ID: 29465260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait analysis in lower-limb amputation and prosthetic rehabilitation.
    Esquenazi A
    Phys Med Rehabil Clin N Am; 2014 Feb; 25(1):153-67. PubMed ID: 24287245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic effects of using a variable impedance prosthetic knee.
    Williams MR; Herr H; D'Andrea S
    J Rehabil Res Dev; 2016; 53(6):1079-1088. PubMed ID: 28355031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A quasi-passive compliant stance control Knee-Ankle-Foot Orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650471. PubMed ID: 24187288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-distance walking effects on trans-tibial amputees compensatory gait patterns and implications on prosthetic designs and training.
    Yeung LF; Leung AK; Zhang M; Lee WC
    Gait Posture; 2012 Feb; 35(2):328-33. PubMed ID: 22055554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How Well Can Modern Nonhabitual Barefoot Youth Adapt to Barefoot and Minimalist Barefoot Technology Shoe Walking, in regard to Gait Symmetry.
    Xu Y; Hou Q; Wang C; Simpson T; Bennett B; Russell S
    Biomed Res Int; 2017; 2017():4316821. PubMed ID: 29214168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and development of ankle-foot prosthesis with delayed release of plantarflexion.
    Mitchell M; Craig K; Kyberd P; Biden E; Bush G
    J Rehabil Res Dev; 2013; 50(3):409-22. PubMed ID: 23881766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local dynamic stability of lower extremity joints in lower limb amputees during slope walking.
    Chen JL; Gu DY
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7241-4. PubMed ID: 24111416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.