These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 18064151)
1. Water-vapor mixing-ratio measurements in the solar-blind region. de Tomasi F; Torsello G; Perrone MR Opt Lett; 2000 May; 25(10):686-8. PubMed ID: 18064151 [TBL] [Abstract][Full Text] [Related]
2. Monitoring O3 with solar-blind Raman lidars. de Tomasi F; Perrone MR; Protopapa ML Appl Opt; 2001 Mar; 40(9):1314-20. PubMed ID: 18357117 [TBL] [Abstract][Full Text] [Related]
3. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method. Sica RJ; Haefele A Appl Opt; 2016 Feb; 55(4):763-77. PubMed ID: 26836078 [TBL] [Abstract][Full Text] [Related]
4. Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements. Lazzarotto B; Frioud M; Larchevêque G; Mitev V; Quaglia P; Simeonov V; Thompson A; van den Bergh H; Calpini B Appl Opt; 2001 Jun; 40(18):2985-97. PubMed ID: 18357316 [TBL] [Abstract][Full Text] [Related]
5. Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar. Zeyn J; Lahmann W; Weitkamp C Opt Lett; 1996 Aug; 21(16):1301-3. PubMed ID: 19876332 [TBL] [Abstract][Full Text] [Related]
6. Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. Venable DD; Whiteman DN; Calhoun MN; Dirisu AO; Connell RM; Landulfo E Appl Opt; 2011 Aug; 50(23):4622-32. PubMed ID: 21833140 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the solar-blind effect in ultraviolet ozone lidar with Raman lasers. Shibata T; Fukuda T; Narikiyo T; Maeda M Appl Opt; 1987 Jul; 26(13):2604-8. PubMed ID: 20489927 [TBL] [Abstract][Full Text] [Related]
9. Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements. Leblanc T; McDermid IS Appl Opt; 2008 Oct; 47(30):5592-603. PubMed ID: 18936807 [TBL] [Abstract][Full Text] [Related]
10. Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar. Cooney J; Petri K; Salik A Appl Opt; 1985 Jan; 24(1):104-8. PubMed ID: 18216910 [TBL] [Abstract][Full Text] [Related]
11. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. Ehret G; Kiemle C; Renger W; Simmet G Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116 [TBL] [Abstract][Full Text] [Related]
12. Variable-wavelength solar-blind Raman lidar for remote measurement of atmospheric water-vapor concentration and temperature. Petri K; Salik A; Cooney J Appl Opt; 1982 Apr; 21(7):1212-8. PubMed ID: 20389833 [TBL] [Abstract][Full Text] [Related]
13. Study of the statistics of water vapor mixing ratio determined from Raman lidar measurements. Bosser P; Bock O; Thom C; Pelon J Appl Opt; 2007 Nov; 46(33):8170-80. PubMed ID: 18026556 [TBL] [Abstract][Full Text] [Related]
14. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system. Ponsardin P; Higdon NS; Grossmann BE; Browell EV Appl Opt; 1994 Sep; 33(27):6439-50. PubMed ID: 20941182 [TBL] [Abstract][Full Text] [Related]
15. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations. Di Girolamo P; Behrendt A; Wulfmeyer V Appl Opt; 2006 Apr; 45(11):2474-94. PubMed ID: 16623245 [TBL] [Abstract][Full Text] [Related]
16. Statistical-uncertainty-based adaptive filtering of lidar signals. Fuehrer PL; Friehe CA; Hristov TS; Cooper DI; Eichinger WE Appl Opt; 2000 Feb; 39(5):850-9. PubMed ID: 18337962 [TBL] [Abstract][Full Text] [Related]
17. Relative-humidity profiling in the troposphere with a Raman lidar. Mattis I; Ansmann A; Althausen D; Jaenisch V; Wandinger U; Müller D; Arshinov YF; Bobrovnikov SM; Serikov IB Appl Opt; 2002 Oct; 41(30):6451-62. PubMed ID: 12396198 [TBL] [Abstract][Full Text] [Related]
18. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach. Whiteman DN; Venable DD; Walker M; Cadirola M; Sakai T; Veselovskii I Appl Opt; 2013 Aug; 52(22):5376-84. PubMed ID: 23913054 [TBL] [Abstract][Full Text] [Related]
19. Examination of the traditional raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Whiteman DN Appl Opt; 2003 May; 42(15):2593-608. PubMed ID: 12776995 [TBL] [Abstract][Full Text] [Related]
20. Application of statistical methods to the determination of slope in lidar data. Whiteman DN Appl Opt; 1999 May; 38(15):3360-9. PubMed ID: 18319933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]