BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18064356)

  • 1. Interplay between the morphometry of the lungs and the mode of locomotion in birds and mammals.
    Figueroa D; Olivares R; Salaberry M; Sabat P; Canals M
    Biol Res; 2007; 40(2):193-201. PubMed ID: 18064356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An allometric study of pulmonary morphometric parameters in birds, with mammalian comparisons.
    Maina JN; King AS; Settle G
    Philos Trans R Soc Lond B Biol Sci; 1989 Nov; 326(1231):1-57. PubMed ID: 2575769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A morphometric study of the lungs of different sized bats: correlations between structure and function of the chiropteran lung.
    Maina JN; Thomas SP; Hyde DM
    Philos Trans R Soc Lond B Biol Sci; 1991 Jul; 333(1266):31-50. PubMed ID: 1682957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphometrics of the avian lung. 4. The structural design of the charadriiform lung.
    Maina JN
    Respir Physiol; 1987 Apr; 68(1):99-119. PubMed ID: 3602614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of the respiratory system of the house sparrow, budgerigar and violet-eared hummingbird.
    Dubach M
    Respir Physiol; 1981 Oct; 46(1):43-60. PubMed ID: 7330491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphometrics of the avian lung. 3. The structural design of the passerine lung.
    Maina JN
    Respir Physiol; 1984 Mar; 55(3):291-307. PubMed ID: 6739986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental structural aspects and features in the bioengineering of the gas exchangers: comparative perspectives.
    Maina JN
    Adv Anat Embryol Cell Biol; 2002; 163():III-XII, 1-108. PubMed ID: 11892241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The honeycomb-like structure of the bird lung allows a uniquely thin blood-gas barrier.
    West JB; Watson RR; Fu Z
    Respir Physiol Neurobiol; 2006 May; 152(1):115-8. PubMed ID: 16431166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and morphometric specializations of the lung of the Andean goose, Chloephaga melanoptera: A lifelong high-altitude resident.
    Maina JN; McCracken KG; Chua B; York JM; Milsom WK
    PLoS One; 2017; 12(3):e0174395. PubMed ID: 28339478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What it takes to fly: the structural and functional respiratory refinements in birds and bats.
    Maina JN
    J Exp Biol; 2000 Oct; 203(Pt 20):3045-64. PubMed ID: 11003817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of maximum metabolic rate and pulmonary diffusing capacity in the superprecocial Australian Brush Turkey Alectura lathami: an allometric and morphometric study.
    Seymour RS; Runciman S; Baudinette RV
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):169-75. PubMed ID: 16714130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between locomotion and ventilation in tetrapods.
    Boggs DF
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Oct; 133(2):269-88. PubMed ID: 12208300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations between structure and function in the design of the bat lung: a morphometric study.
    Maina JN; King AS
    J Exp Biol; 1984 Jul; 111():43-61. PubMed ID: 6491593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of breathing in birds compared with mammals.
    Bouverot P
    Physiol Rev; 1978 Jul; 58(3):604-55. PubMed ID: 356069
    [No Abstract]   [Full Text] [Related]  

  • 15. Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach.
    Lavin SR; Karasov WH; Ives AR; Middleton KM; Garland T
    Physiol Biochem Zool; 2008; 81(5):526-50. PubMed ID: 18754728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light microscopic morphometry of the lung of 19 avian species.
    Maina JN; Abdalla MA; King AS
    Acta Anat (Basel); 1982; 112(3):264-70. PubMed ID: 7102251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts.
    Caviedes-Vidal E; McWhorter TJ; Lavin SR; Chediack JG; Tracy CR; Karasov WH
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):19132-7. PubMed ID: 18025481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morphometric analysis of the lung of a species of bat.
    Maina JN; King AS; King DZ
    Respir Physiol; 1982 Oct; 50(1):1-11. PubMed ID: 7178701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations between Resting, Activity, and Daily Metabolic Rate in Free-Living Endotherms: No Universal Rule in Birds and Mammals.
    Portugal SJ; Green JA; Halsey LG; Arnold W; Careau V; Dann P; Frappell PB; Grémillet D; Handrich Y; Martin GR; Ruf T; Guillemette MM; Butler PJ
    Physiol Biochem Zool; 2016; 89(3):251-61. PubMed ID: 27153134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood flow for bone remodelling correlates with locomotion in living and extinct birds.
    Allan GH; Cassey P; Snelling EP; Maloney SK; Seymour RS
    J Exp Biol; 2014 Aug; 217(Pt 16):2956-62. PubMed ID: 24902751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.