These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18064356)

  • 21. Aerobic power and flight capacity in birds: a phylogenetic test of the heart-size hypothesis.
    Nespolo RF; González-Lagos C; Solano-Iguaran JJ; Elfwing M; Garitano-Zavala A; Mañosa S; Alonso JC; Altimiras J
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29150450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zebrin II Expression in the Cerebellum of a Paleognathous Bird, the Chilean Tinamou (Nothoprocta perdicaria).
    Corfield JR; Kolominsky J; Marin GJ; Craciun I; Mulvany-Robbins BE; Iwaniuk AN; Wylie DR
    Brain Behav Evol; 2015; 85(2):94-106. PubMed ID: 25871652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The lung of the emu, Dromaius novaehollandiae: a microscopic and morphometric study.
    Maina JN; King AS
    J Anat; 1989 Apr; 163():67-73. PubMed ID: 2606782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Evolution of Unidirectional Pulmonary Airflow.
    Farmer CG
    Physiology (Bethesda); 2015 Jul; 30(4):260-72. PubMed ID: 26136540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolism during flight in two species of bats, Phyllostomus hastatus and Pteropus gouldii.
    Thomas SP
    J Exp Biol; 1975 Aug; 63(1):273-93. PubMed ID: 1159367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flying high: a theoretical analysis of the factors limiting exercise performance in birds at altitude.
    Scott GR; Milsom WK
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):284-301. PubMed ID: 16563881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anchoring and support system of pulmonary gas-exchange tissue in four bird species.
    Klika E; Scheuermann DW; De Groodt-Lasseel MH; Bazantova I; Switka A
    Acta Anat (Basel); 1997; 159(1):30-41. PubMed ID: 9522895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circulatory variables and the flight performance of birds.
    Bishop CM
    J Exp Biol; 2005 May; 208(Pt 9):1695-708. PubMed ID: 15855401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives.
    Maina JN
    Biol Rev Camb Philos Soc; 2002 Feb; 77(1):97-152. PubMed ID: 11911376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Comparative study of respiratory exchanging surfaces in birds and mammals].
    Jammes Y
    Poumon Coeur; 1975; 31(4):165-8. PubMed ID: 1208301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The lung of shrews: morphometric estimation of diffusion capacity.
    Gehr P; Sehovic S; Burri PH; Claassen H; Weibel ER
    Respir Physiol; 1980 Apr; 40(1):33-47. PubMed ID: 7394364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerodynamic flight performance in flap-gliding birds and bats.
    Muijres FT; Henningsson P; Stuiver M; Hedenström A
    J Theor Biol; 2012 Aug; 306():120-8. PubMed ID: 22726811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Avian cerebellar floccular fossa size is not a proxy for flying ability in birds.
    Walsh SA; Iwaniuk AN; Knoll MA; Bourdon E; Barrett PM; Milner AC; Nudds RL; Abel RL; Sterpaio PD
    PLoS One; 2013; 8(6):e67176. PubMed ID: 23825638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Locomotion: energy cost of swimming, flying, and running.
    Schmidt-Nielsen K
    Science; 1972 Jul; 177(4045):222-8. PubMed ID: 4557340
    [No Abstract]   [Full Text] [Related]  

  • 35. Energetic and biomechanical constraints on animal migration distance.
    Hein AM; Hou C; Gillooly JF
    Ecol Lett; 2012 Feb; 15(2):104-10. PubMed ID: 22093885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flightless birds are not neuroanatomical analogs of non-avian dinosaurs.
    Gold MEL; Watanabe A
    BMC Evol Biol; 2018 Dec; 18(1):190. PubMed ID: 30545287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A qualitative and quantitative study of the lung of an ostrich, Struthio camelus.
    Maina JN; Nathaniel C
    J Exp Biol; 2001 Jul; 204(Pt 13):2313-30. PubMed ID: 11507114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The flight of Archaeopteryx.
    Chatterjee S; Templin RJ
    Naturwissenschaften; 2003 Jan; 90(1):27-32. PubMed ID: 12545240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone.
    Maina JN
    Biol Rev Camb Philos Soc; 2006 Nov; 81(4):545-79. PubMed ID: 17038201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.