BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18064575)

  • 1. Expression of two old yellow enzyme homologues from Gluconobacter oxydans and identification of their citral hydrogenation abilities.
    Yin B; Yang X; Wei G; Ma Y; Wei D
    Mol Biotechnol; 2008 Mar; 38(3):241-5. PubMed ID: 18064575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Enantioselectivity of Yeast Old Yellow Enzyme OYE2y in Asymmetric Reduction of (
    Ying X; Yu S; Huang M; Wei R; Meng S; Cheng F; Yu M; Ying M; Zhao M; Wang Z
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30889828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans.
    Yin B; Deng J; Lim L; Yuan YA; Wei D
    Biosci Biotechnol Biochem; 2015; 79(3):410-21. PubMed ID: 25561169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-terminal truncation (N-) and directional proton transfer in an old yellow enzyme enables tunable efficient producing (R)- or (S)-citronellal.
    Zhang J; Li Y; Gao H; Zhang H; Zhang X; Rao Z; Xu M
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130129. PubMed ID: 38354939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H.
    Schweiger P; Volland S; Deppenmeier U
    J Mol Microbiol Biotechnol; 2007; 13(1-3):147-55. PubMed ID: 17693722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of Yeast Old Yellow Enzyme OYE3 Enables Its Capability Discriminating of (
    Wang T; Wei R; Feng Y; Jin L; Jia Y; Yang D; Liang Z; Han M; Li X; Lu C; Ying X
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A homolog of old yellow enzyme in tomato. Spectral properties and substrate specificity of the recombinant protein.
    Strassner J; Fürholz A; Macheroux P; Amrhein N; Schaller A
    J Biol Chem; 1999 Dec; 274(49):35067-73. PubMed ID: 10574986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel NADPH-dependent oxidoreductase from Gluconobacter oxydans.
    Chen M; Lin J; Ma Y; Wei D
    Mol Biotechnol; 2010 Oct; 46(2):176-81. PubMed ID: 20411365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans.
    Richter N; Gröger H; Hummel W
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):79-89. PubMed ID: 20717668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase.
    Müller A; Hauer B; Rosche B
    Biotechnol Bioeng; 2007 Sep; 98(1):22-9. PubMed ID: 17657768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of a recombinant NADP-dependent glycerol dehydrogenase from Gluconobacter oxydans and its application in the production of L-glyceraldehyde.
    Richter N; Neumann M; Liese A; Wohlgemuth R; Eggert T; Hummel W
    Chembiochem; 2009 Jul; 10(11):1888-96. PubMed ID: 19579248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of aldehyde reductases from Gluconobacter oxydans 621H.
    Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1025-31. PubMed ID: 19644687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vinyl ketone reduction by three distinct Gluconobacter oxydans 621H enzymes.
    Schweiger P; Gross H; Wesener S; Deppenmeier U
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):995-1006. PubMed ID: 18629490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of enzymes in the oxidation of 1,2-propanediol to D: -(-)-lactic acid by Gluconobacter oxydans DSM 2003.
    Wei L; Yang X; Gao K; Lin J; Yang S; Hua Q; Wei D
    Mol Biotechnol; 2010 Sep; 46(1):26-33. PubMed ID: 20300886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differences in physiological function.
    Brigé A; Van den Hemel D; Carpentier W; De Smet L; Van Beeumen JJ
    Biochem J; 2006 Feb; 394(Pt 1):335-44. PubMed ID: 16293111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoregulated expression and characterization of an NAD(P)H-dependent 2-cyclohexen-1-one reductase in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea.
    Rohde BH; Schmid R; Ullrich MS
    J Bacteriol; 1999 Feb; 181(3):814-22. PubMed ID: 9922244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinic semialdehyde reductase Gox1801 from Gluconobacter oxydans in comparison to other succinic semialdehyde-reducing enzymes.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2015 May; 99(9):3929-39. PubMed ID: 25425279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved heterologous expression of the membrane-bound quinoprotein quinate dehydrogenase from Gluconobacter oxydans.
    Yakushi T; Komatsu K; Matsutani M; Kataoka N; Vangnai AS; Toyama H; Adachi O; Matsushita K
    Protein Expr Purif; 2018 May; 145():100-107. PubMed ID: 29366965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced xylitol production: Expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell.
    Qi XH; Zhu JF; Yun JH; Lin J; Qi YL; Guo Q; Xu H
    J Biosci Bioeng; 2016 Sep; 122(3):257-62. PubMed ID: 26975753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.