These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18064575)

  • 21. Characterization of two aldo-keto reductases from Gluconobacter oxydans 621H capable of regio- and stereoselective alpha-ketocarbonyl reduction.
    Schweiger P; Gross H; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1415-26. PubMed ID: 20414648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The occurrence of a novel NADH dehydrogenase, distinct from the old yellow enzyme, in Gluconobacter strains.
    Shinagawa E; Ano Y; Adachi O; Matsushita K
    Biosci Biotechnol Biochem; 2008 Jan; 72(1):260-4. PubMed ID: 18175896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric reduction of diketones by two Gluconobacter oxydans oxidoreductases.
    Schweiger P; Gross H; Zeiser J; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3475-84. PubMed ID: 22987199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and characterization of a novel NAD+ -dependent xylitol dehydrogenase from Gluconobacter oxydans CGMCC 1. 637.
    Lin Y; Xie Z; Zhang J; Bao W; Pan H; Li B
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):726-35. PubMed ID: 22934353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a putative stereoselective oxidoreductase from Gluconobacter oxydans and its application in producing ethyl (R)-4-chloro-3-hydroxybutanoate ester.
    Liu X; Chen R; Yang Z; Wang J; Lin J; Wei D
    Mol Biotechnol; 2014 Apr; 56(4):285-95. PubMed ID: 24113812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification of xylitol dehydrogenase and improved production of xylitol by increasing XDH activity and NADH supply in Gluconobacter oxydans.
    Zhang J; Li S; Xu H; Zhou P; Zhang L; Ouyang P
    J Agric Food Chem; 2013 Mar; 61(11):2861-7. PubMed ID: 23432201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular characterization and heterologous expression of quinate dehydrogenase gene from Gluconobacter oxydans IFO3244.
    Vangnai AS; Promden W; De-Eknamkul W; Matsushita K; Toyama H
    Biochemistry (Mosc); 2010 Apr; 75(4):452-9. PubMed ID: 20618134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose.
    Yang XP; Wei LJ; Lin JP; Yin B; Wei DZ
    Appl Environ Microbiol; 2008 Aug; 74(16):5250-3. PubMed ID: 18502922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transaldolase/glucose-6-phosphate isomerase bifunctional enzyme and ribulokinase as factors to increase xylitol production from D-arabitol in Gluconobacter oxydans.
    Sugiyama M; Suzuki S; Tonouchi N; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2524-32. PubMed ID: 14730129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A single membrane-bound enzyme catalyzes the conversion of 2,5-diketo-d-gluconate to 4-keto-d-arabonate in d-glucose oxidative fermentation by Gluconobacter oxydans NBRC 3292.
    Tazoe M; Oishi H; Kobayashi S; Hoshino T
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1505-12. PubMed ID: 27010909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular cloning and functional expression of d-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli.
    Cheng H; Jiang N; Shen A; Feng Y
    FEMS Microbiol Lett; 2005 Nov; 252(1):35-42. PubMed ID: 16165327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary variants.
    Padhi SK; Bougioukou DJ; Stewart JD
    J Am Chem Soc; 2009 Mar; 131(9):3271-80. PubMed ID: 19226127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
    Shi L; Li K; Zhang H; Liu X; Lin J; Wei D
    J Biotechnol; 2014 Apr; 175():69-74. PubMed ID: 24530540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle.
    Kiefler I; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9147-60. PubMed ID: 26399411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans.
    Suzuki S; Sugiyama M; Mihara Y; Hashiguchi K; Yokozeki K
    Biosci Biotechnol Biochem; 2002 Dec; 66(12):2614-20. PubMed ID: 12596856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound.
    Kataoka M; Kotaka A; Thiwthong R; Wada M; Nakamori S; Shimizu S
    J Biotechnol; 2004 Oct; 114(1-2):1-9. PubMed ID: 15464593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mouse liver NAD(P)H:quinone acceptor oxidoreductase: protein sequence analysis by tandem mass spectrometry, cDNA cloning, expression in Escherichia coli, and enzyme activity analysis.
    Chen S; Clarke PE; Martino PA; Deng PS; Yeh CH; Lee TD; Prochaska HJ; Talalay P
    Protein Sci; 1994 Aug; 3(8):1296-304. PubMed ID: 7527260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover.
    Richter N; Breicha K; Hummel W; Niefind K
    J Mol Biol; 2010 Dec; 404(3):353-62. PubMed ID: 20887732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.