BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 18065153)

  • 21. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey.
    Good PF; Morrison JH
    J Comp Neurol; 1995 Jun; 357(1):25-35. PubMed ID: 7673466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Descending projections from the auditory cortex to the inferior colliculus in the gerbil, Meriones unguiculatus.
    Bajo VM; Moore DR
    J Comp Neurol; 2005 May; 486(2):101-16. PubMed ID: 15844210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex.
    Barth DS; Goldberg N; Brett B; Di S
    Brain Res; 1995 Apr; 678(1-2):177-90. PubMed ID: 7620886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory projections to extrastriate visual cortex: connectional basis for multisensory processing in 'unimodal' visual neurons.
    Clemo HR; Sharma GK; Allman BL; Meredith MA
    Exp Brain Res; 2008 Oct; 191(1):37-47. PubMed ID: 18648784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis).
    Insausti R; Muñoz M
    Eur J Neurosci; 2001 Aug; 14(3):435-51. PubMed ID: 11553294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The lateral suprasylvian corticotectal projection in cats.
    Segal RL; Beckstead RM
    J Comp Neurol; 1984 May; 225(2):259-75. PubMed ID: 6725646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey.
    Barnes CL; Pandya DN
    J Comp Neurol; 1992 Apr; 318(2):222-44. PubMed ID: 1583161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An analysis of entorhinal cortex projections to the dentate gyrus, hippocampus, and subiculum of the neonatal macaque monkey.
    Amaral DG; Kondo H; Lavenex P
    J Comp Neurol; 2014 May; 522(7):1485-505. PubMed ID: 24122645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential cortical and subcortical projection targets of subfields in the core region of mouse auditory cortex.
    Nakata S; Takemoto M; Song WJ
    Hear Res; 2020 Feb; 386():107876. PubMed ID: 31881516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA-HRP.
    Martin-Elkins CL; Horel JA
    J Comp Neurol; 1992 Jul; 321(2):177-92. PubMed ID: 1380012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat.
    Butler BE; Chabot N; Lomber SG
    J Comp Neurol; 2016 Sep; 524(13):2623-42. PubMed ID: 26850989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The entorhinal cortex of the monkey: II. Cortical afferents.
    Insausti R; Amaral DG; Cowan WM
    J Comp Neurol; 1987 Oct; 264(3):356-95. PubMed ID: 2445796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual and auditory association areas of the cat's posterior ectosylvian gyrus: cortical afferents.
    Bowman EM; Olson CR
    J Comp Neurol; 1988 Jun; 272(1):30-42. PubMed ID: 2454976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sources of somatosensory input to the caudal belt areas of auditory cortex.
    Hackett TA; Smiley JF; Ulbert I; Karmos G; Lakatos P; de la Mothe LA; Schroeder CE
    Perception; 2007; 36(10):1419-30. PubMed ID: 18265825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Propagation pattern of entorhinal cortex subfields to the dentate gyrus in the guinea-pig: an electrophysiological study.
    Uva L; de Curtis M
    Neuroscience; 2003; 122(3):843-51. PubMed ID: 14622926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entorhinal cortex of the rat: organization of intrinsic connections.
    Dolorfo CL; Amaral DG
    J Comp Neurol; 1998 Aug; 398(1):49-82. PubMed ID: 9703027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multisensory convergence in calcarine visual areas in macaque monkey.
    Rockland KS; Ojima H
    Int J Psychophysiol; 2003 Oct; 50(1-2):19-26. PubMed ID: 14511833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The commissural connections of the monkey hippocampal formation.
    Amaral DG; Insausti R; Cowan WM
    J Comp Neurol; 1984 Apr; 224(3):307-36. PubMed ID: 6715582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey.
    Saint-Cyr JA; Ungerleider LG; Desimone R
    J Comp Neurol; 1990 Aug; 298(2):129-56. PubMed ID: 1698830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parahippocampal projections to posterior auditory association cortex (area Tpt) in Old-World monkeys.
    Tranel D; Brady DR; Van Hoesen GW; Damasio AR
    Exp Brain Res; 1988; 70(2):406-16. PubMed ID: 3384041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.