These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 18065248)
1. The transparent lens and cornea in the mouse and zebra fish eye. Greiling TM; Clark JI Semin Cell Dev Biol; 2008 Apr; 19(2):94-9. PubMed ID: 18065248 [TBL] [Abstract][Full Text] [Related]
2. Eye evolution: lens and cornea as an upgrade of animal visual system. Jonasova K; Kozmik Z Semin Cell Dev Biol; 2008 Apr; 19(2):71-81. PubMed ID: 18035562 [TBL] [Abstract][Full Text] [Related]
3. Ultraviolet radiation transmittance of the mouse eye and its individual media components. Henriksson JT; Bergmanson JP; Walsh JE Exp Eye Res; 2010 Mar; 90(3):382-7. PubMed ID: 19925789 [TBL] [Abstract][Full Text] [Related]
4. Contribution of the cornea and lens to the spherical aberration of the eye. Millodot M; Sivak J Vision Res; 1979; 19(6):685-7. PubMed ID: 547478 [No Abstract] [Full Text] [Related]
5. The eye and its disorders. 14. Refraction in the normal eye. Trevor-Roper PD Int Ophthalmol Clin; 1974; 14(1-2):213-23. PubMed ID: 4420417 [No Abstract] [Full Text] [Related]
6. Optical development in the zebrafish eye lens. Wang K; Vorontsova I; Hoshino M; Uesugi K; Yagi N; Hall JE; Schilling TF; Pierscionek BK FASEB J; 2020 Apr; 34(4):5552-5562. PubMed ID: 32103543 [TBL] [Abstract][Full Text] [Related]
7. Lens and cornea: the "refracton hypothesis". Piatigorsky J Semin Cell Dev Biol; 2008 Apr; 19(2):69-70. PubMed ID: 18054835 [No Abstract] [Full Text] [Related]
8. [Optics of the normal eye]. Delmarcelle Y Arch Ophtalmol (Paris); 1977; 37(2):153-62. PubMed ID: 142469 [No Abstract] [Full Text] [Related]
9. The role of the spectacle in the visual optics of the snake eye. Sivak JG Vision Res; 1977 Feb; 17(2):293-8. PubMed ID: 867850 [No Abstract] [Full Text] [Related]
10. A new schematic eye model incorporating accommodation. Popiolek-Masajada A; Kasprzak HT Optom Vis Sci; 1999 Oct; 76(10):720-7. PubMed ID: 10524788 [TBL] [Abstract][Full Text] [Related]
11. Optical absorption and scattering of bovine cornea, lens and retina in the visible region. Sardar DK; Yust BG; Barrera FJ; Mimun LC; Tsin AT Lasers Med Sci; 2009 Nov; 24(6):839-47. PubMed ID: 19495828 [TBL] [Abstract][Full Text] [Related]
12. Optics of the harbor porpoise eye in water. Kröger RH; Kirschfeld K J Opt Soc Am A; 1993 Jul; 10(7):1481-9. PubMed ID: 8350146 [TBL] [Abstract][Full Text] [Related]
13. New insights into the mechanism of lens development using zebra fish. Greiling TM; Clark JI Int Rev Cell Mol Biol; 2012; 296():1-61. PubMed ID: 22559937 [TBL] [Abstract][Full Text] [Related]
14. In vivo Brillouin optical microscopy of the human eye. Scarcelli G; Yun SH Opt Express; 2012 Apr; 20(8):9197-202. PubMed ID: 22513631 [TBL] [Abstract][Full Text] [Related]
15. Image formation by the crystalline lens and eye of the rainbow trout. Jagger WS Vision Res; 1996 Sep; 36(17):2641-55. PubMed ID: 8917751 [TBL] [Abstract][Full Text] [Related]
16. Review: A case for corneal crystallins. Piatigorsky J J Ocul Pharmacol Ther; 2000 Apr; 16(2):173-80. PubMed ID: 10803428 [TBL] [Abstract][Full Text] [Related]
17. Contribution of the crystalline lens to the spherical aberration of the eye. el-Hage SG; Berny F J Opt Soc Am; 1973 Feb; 63(2):205-11. PubMed ID: 4700787 [No Abstract] [Full Text] [Related]
18. The physiological optics of the lens. Donaldson PJ; Grey AC; Maceo Heilman B; Lim JC; Vaghefi E Prog Retin Eye Res; 2017 Jan; 56():e1-e24. PubMed ID: 27639549 [TBL] [Abstract][Full Text] [Related]
19. The photophysics and photobiology of the eye. Dillon J J Photochem Photobiol B; 1991 Jul; 10(1-2):23-40. PubMed ID: 1955945 [TBL] [Abstract][Full Text] [Related]
20. On the ocular refractive components: the Reykjavik Eye Study. Olsen T; Arnarsson A; Sasaki H; Sasaki K; Jonasson F Acta Ophthalmol Scand; 2007 Jun; 85(4):361-6. PubMed ID: 17286626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]