These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18065253)

  • 1. Determination of the receiving range of sound field measurements in cavitating media.
    Koch C; Jenderka KV
    Ultrason Sonochem; 2008 Jul; 15(5):846-52. PubMed ID: 18065253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.
    Koch C
    Ultrason Sonochem; 2016 Mar; 29():439-46. PubMed ID: 24953962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation.
    Jenderka KV; Koch C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e401-6. PubMed ID: 16781752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ray-based acoustic localization of cavitation in a highly reverberant environment.
    Chang NA; Dowling DR
    J Acoust Soc Am; 2009 May; 125(5):3088-100. PubMed ID: 19425652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel study of mechanical heart valve cavitation in a pressurized pulsatile duplicator.
    Wu C; Retta SM; Robinson RA; Herman BA; Grossman LW
    ASAIO J; 2009; 55(5):445-51. PubMed ID: 19701083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On fiber optic probe hydrophone measurements in a cavitating liquid.
    Zijlstra A; Ohl CD
    J Acoust Soc Am; 2008 Jan; 123(1):29-32. PubMed ID: 18177133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of sound field in cavitating media by an optical fibre-tip hydrophone.
    Koch C; Jenderka KV
    Ultrason Sonochem; 2008 Apr; 15(4):502-509. PubMed ID: 17644460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary calibration of hydrophones with extended frequency range 1 to 70 MHz using optical interferometry.
    Koch C; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1303-14. PubMed ID: 18244323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model processes and cavitation indicators for a quantitative description of an ultrasonic cleaning vessel: Part I: experimental results.
    Jüschke M; Koch C
    Ultrason Sonochem; 2012 Jul; 19(4):787-95. PubMed ID: 22261472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute calibration of hydrophones immersed in sandy sediment.
    Robb GB; Robinson SP; Theobald PD; Hayman G; Humphrey VF; Leighton TG; Wang LS; Dix JK; Best AI
    J Acoust Soc Am; 2009 May; 125(5):2918-27. PubMed ID: 19425635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography.
    Bi CX; Chen XZ; Chen J
    J Acoust Soc Am; 2008 Mar; 123(3):1472-8. PubMed ID: 18345836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical cavitation probe using light scattering from bubble clouds.
    Iida Y; Lee J; Kozuka T; Yasui K; Towata A; Tuziuti T
    Ultrason Sonochem; 2009 Apr; 16(4):519-24. PubMed ID: 19138548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels.
    Zeqiri B; Hodnett M; Carroll AJ
    Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors.
    Servant G; Laborde JL; Hita A; Caltagirone JP; Gérard A
    Ultrason Sonochem; 2003 Oct; 10(6):347-55. PubMed ID: 12927611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting experimental methods for studies of acidity-dependent ocean sound absorption.
    Duda TF
    J Acoust Soc Am; 2009 Apr; 125(4):1971-81. PubMed ID: 19354373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency geoacoustic model for the effective properties of sandy seabottoms.
    Zhou JX; Zhang XZ; Knobles DP
    J Acoust Soc Am; 2009 May; 125(5):2847-66. PubMed ID: 19425630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A psychophysical evaluation of near-field head-related transfer functions synthesized using a distance variation function.
    Kan A; Jin C; van Schaik A
    J Acoust Soc Am; 2009 Apr; 125(4):2233-42. PubMed ID: 19354399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive near-field beamforming techniques for sound source imaging.
    Cho YT; Roan MJ
    J Acoust Soc Am; 2009 Feb; 125(2):944-57. PubMed ID: 19206871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying spectrum analysis and cepstrum analysis to examine the cavitation threshold in water and in salt solution.
    Gudra T; Opielinski KJ
    Ultrasonics; 2004 Apr; 42(1-9):621-7. PubMed ID: 15047357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-contact method for analysis of cavitating flows.
    Biluš I; Bizjan B; Lešnik L; Širok B; Pečnik B; Dular M
    Ultrasonics; 2017 Nov; 81():178-186. PubMed ID: 28711033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.