These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 18065256)

  • 1. A method for vector displacement estimation with ultrasound imaging and its application for thyroid nodular disease.
    Basarab A; Liebgott H; Morestin F; Lyshchik A; Higashi T; Asato R; Delachartre P
    Med Image Anal; 2008 Jun; 12(3):259-74. PubMed ID: 18065256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-based block matching applied to motion estimation with unconventional beamforming strategies.
    Basarab A; Gueth P; Liebgott H; Delachartre P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):945-57. PubMed ID: 19473913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. US-elastography in the differential diagnosis of benign and malignant thyroid nodules.
    Asteria C; Giovanardi A; Pizzocaro A; Cozzaglio L; Morabito A; Somalvico F; Zoppo A
    Thyroid; 2008 May; 18(5):523-31. PubMed ID: 18466077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion estimation using the monogenic signal applied to ultrasound elastography.
    Maltaverne T; Delachartre P; Basarab A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():33-6. PubMed ID: 21095638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified block matching method for real-time freehand strain imaging.
    Zhu Y; Hall TJ
    Ultrason Imaging; 2002 Jul; 24(3):161-76. PubMed ID: 12503771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrections to the displacement estimation based on analytic minimization of adaptive regularized cost functions for ultrasound elastography.
    Peng B; Lai J; Wang L; Liu DC
    Biomed Mater Eng; 2014; 24(6):2801-10. PubMed ID: 25226985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A motion estimation refinement framework for real-time tissue axial strain estimation with freehand ultrasound.
    Zhou Y; Zheng YP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1943-51. PubMed ID: 20875984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-frame elastography using a handheld force-controlled ultrasound probe.
    Kuzmin A; Zakrzewski AM; Anthony BW; Lempitsky V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1486-500. PubMed ID: 26276958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-domain-based strain estimation and high-frame-rate imaging for quasi-static elastography.
    Ramalli A; Basset O; Cachard C; Boni E; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):817-24. PubMed ID: 22547293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional ultrasound measurement of thyroid gland volume: a new equation with higher correlation with 3-D ultrasound measurement.
    Ying M; Yung DM; Ho KK
    Ultrasound Med Biol; 2008 Jan; 34(1):56-63. PubMed ID: 17689179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can elastography stretch our understanding of thyroid histomorphology?
    Hegedüs L
    J Clin Endocrinol Metab; 2010 Dec; 95(12):5213-5. PubMed ID: 21131544
    [No Abstract]   [Full Text] [Related]  

  • 13. Accuracy of three-dimensional ultrasound for thyroid volume measurement in children and adolescents.
    Lyshchik A; Drozd V; Reiners C
    Thyroid; 2004 Feb; 14(2):113-20. PubMed ID: 15068625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules.
    Rago T; Santini F; Scutari M; Pinchera A; Vitti P
    J Clin Endocrinol Metab; 2007 Aug; 92(8):2917-22. PubMed ID: 17535993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound elastography: a dynamic programming approach.
    Rivaz H; Boctor E; Foroughi P; Zellars R; Fichtinger G; Hager G
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1373-7. PubMed ID: 18815089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elasticity reconstruction from displacement and confidence measures of a multi-compressed ultrasound RF sequence.
    Li J; Cui Y; Kadour M; Noble JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):319-26. PubMed ID: 18334339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D ultrasonic elastography with lateral displacement estimation using statistics.
    Zhang Z; Liu H; Cheng Y
    Biomed Mater Eng; 2014; 24(6):2783-91. PubMed ID: 25226983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-D locally regularized tissue strain estimation from radio-frequency ultrasound images: theoretical developments and results on experimental data.
    Brusseau E; Kybic J; Deprez JF; Basset O
    IEEE Trans Med Imaging; 2008 Feb; 27(2):145-60. PubMed ID: 18334437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Tissue Mechanics Based Method to Improve Tissue Displacement Estimation in Ultrasound Elastography
    Kheirkhah N; Dempsey SCH; Rivaz H; Samani A; Sadeghi-Naini A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2051-2054. PubMed ID: 33018408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method to estimate the deviation from ideal uniaxial compression during freehand elastography.
    Xia R; Thittai AK
    Ultrason Imaging; 2015 Jan; 37(1):70-82. PubMed ID: 24916397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.