BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 18065266)

  • 1. Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications.
    Vuckovic A; Sepulveda F
    Clin Neurophysiol; 2008 Feb; 119(2):446-58. PubMed ID: 18065266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipolar electrode selection for a motor imagery based brain-computer interface.
    Lou B; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Sep; 5(3):342-9. PubMed ID: 18756030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification effects of real and imaginary movement selective attention tasks on a P300-based brain-computer interface.
    Salvaris M; Sepulveda F
    J Neural Eng; 2010 Oct; 7(5):056004. PubMed ID: 20811088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet packet-based independent component analysis for feature extraction from motor imagery EEG of complex movements.
    Zhou Z; Wan B
    Clin Neurophysiol; 2012 Sep; 123(9):1779-88. PubMed ID: 22464489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification.
    Herman P; Prasad G; McGinnity TM; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining spatial filters for the classification of single-trial EEG in a finger movement task.
    Liao X; Yao D; Wu D; Li C
    IEEE Trans Biomed Eng; 2007 May; 54(5):821-31. PubMed ID: 17518278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BCI Competition 2003--Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements.
    Lemm S; Schäfer C; Curio G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1077-80. PubMed ID: 15188882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brain-computer interface method combined with eye tracking for 3D interaction.
    Lee EC; Woo JC; Kim JH; Whang M; Park KR
    J Neurosci Methods; 2010 Jul; 190(2):289-98. PubMed ID: 20580646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-stage four-class BCI based on imaginary movements of the left and the right wrist.
    Vučković A; Sepulveda F
    Med Eng Phys; 2012 Sep; 34(7):964-71. PubMed ID: 22119365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A motor imagery-based online interactive brain-controlled switch: paradigm development and preliminary test.
    Qian K; Nikolov P; Huang D; Fei DY; Chen X; Bai O
    Clin Neurophysiol; 2010 Aug; 121(8):1304-13. PubMed ID: 20347386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-channel linear descriptors for event-related EEG collected in brain computer interface.
    Pei XM; Zheng CX; Xu J; Bin GY; Wang HW
    J Neural Eng; 2006 Mar; 3(1):52-8. PubMed ID: 16510942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.