BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 18065297)

  • 1. Angiosperm mitochondrial genomes and mutations.
    Kubo T; Newton KJ
    Mitochondrion; 2008 Jan; 8(1):5-14. PubMed ID: 18065297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico analysis of microsatellites in organellar genomes of major cereals for understanding their phylogenetic relationships.
    Rajendrakumar P; Biswal AK; Balachandran SM; Sundaram RM
    In Silico Biol; 2008; 8(2):87-104. PubMed ID: 18928198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genome analysis of monocots and dicots, toward characterization of angiosperm diversity.
    Paterson AH; Bowers JE; Chapman BA; Peterson DG; Rong J; Wicker TM
    Curr Opin Biotechnol; 2004 Apr; 15(2):120-5. PubMed ID: 15081049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA.
    Ogihara Y; Isono K; Kojima T; Endo A; Hanaoka M; Shiina T; Terachi T; Utsugi S; Murata M; Mori N; Takumi S; Ikeo K; Gojobori T; Murai R; Murai K; Matsuoka Y; Ohnishi Y; Tajiri H; Tsunewaki K
    Mol Genet Genomics; 2002 Jan; 266(5):740-6. PubMed ID: 11810247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of RNA editing sites in plant mitochondrial genomes reveals similar information content and a sporadic distribution of editing sites.
    Mulligan RM; Chang KL; Chou CC
    Mol Biol Evol; 2007 Sep; 24(9):1971-81. PubMed ID: 17591603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex mutation and weak selection together determined the codon usage bias in bryophyte mitochondrial genomes.
    Wang B; Liu J; Jin L; Feng XY; Chen JQ
    J Integr Plant Biol; 2010 Dec; 52(12):1100-8. PubMed ID: 21106008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants.
    Drouin G; Daoud H; Xia J
    Mol Phylogenet Evol; 2008 Dec; 49(3):827-31. PubMed ID: 18838124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. History of plastid DNA insertions reveals weak deletion and at mutation biases in angiosperm mitochondrial genomes.
    Sloan DB; Wu Z
    Genome Biol Evol; 2014 Nov; 6(12):3210-21. PubMed ID: 25416619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A horizontally transferred tRNA(Cys) gene in the sugar beet mitochondrial genome: evidence that the gene is present in diverse angiosperms and its transcript is aminoacylated.
    Kitazaki K; Kubo T; Kagami H; Matsumoto T; Fujita A; Matsuhira H; Matsunaga M; Mikami T
    Plant J; 2011 Oct; 68(2):262-72. PubMed ID: 21699590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes--though this be madness, yet there's method in't.
    Woloszynska M
    J Exp Bot; 2010 Mar; 61(3):657-71. PubMed ID: 19995826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to usefully compare homologous plant genes and chromosomes as DNA sequences.
    Lyons E; Freeling M
    Plant J; 2008 Feb; 53(4):661-73. PubMed ID: 18269575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus.
    Dhadi SR; Krom N; Ramakrishna W
    Gene; 2009 Jan; 429(1-2):65-73. PubMed ID: 18973799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of methylation filtration and C(0)t fractionation for analysis of genome composition and comparative genomics in bread wheat.
    Bandopadhyay R; Rustgi S; Chaudhuri RK; Khurana P; Khurana JP; Tyagi AK; Balyan HS; Houben A; Gupta PK
    J Genet Genomics; 2011 Jul; 38(7):315-25. PubMed ID: 21777856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dinoflagellates: a mitochondrial genome all at sea.
    Nash EA; Nisbet RE; Barbrook AC; Howe CJ
    Trends Genet; 2008 Jul; 24(7):328-35. PubMed ID: 18514360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: implications for lophotrochozoan phylogeny.
    Yokobori S; Iseto T; Asakawa S; Sasaki T; Shimizu N; Yamagishi A; Oshima T; Hirose E
    Mol Phylogenet Evol; 2008 May; 47(2):612-28. PubMed ID: 18374604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate and growth form: the consequences for genome size in plants.
    Ohri D
    Plant Biol (Stuttg); 2005 Sep; 7(5):449-58. PubMed ID: 16163609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata.
    DeRose-Wilson LJ; Gaut BS
    BMC Evol Biol; 2007 Apr; 7():66. PubMed ID: 17451608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leafing through the genomes of our major crop plants: strategies for capturing unique information.
    Paterson AH
    Nat Rev Genet; 2006 Mar; 7(3):174-84. PubMed ID: 16485017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The maize genome as a model for efficient sequence analysis of large plant genomes.
    Rabinowicz PD; Bennetzen JL
    Curr Opin Plant Biol; 2006 Apr; 9(2):149-56. PubMed ID: 16459129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.