These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 18066068)

  • 1. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films.
    Jia CL; Mi SB; Urban K; Vrejoiu I; Alexe M; Hesse D
    Nat Mater; 2008 Jan; 7(1):57-61. PubMed ID: 18066068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films.
    Jia CL; Nagarajan V; He JQ; Houben L; Zhao T; Ramesh R; Urban K; Waser R
    Nat Mater; 2007 Jan; 6(1):64-9. PubMed ID: 17173031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-scale mapping of dipole frustration at 90° charged domain walls in ferroelectric PbTiO3 films.
    Tang YL; Zhu YL; Wang YJ; Wang WY; Xu YB; Ren WJ; Zhang ZD; Ma XL
    Sci Rep; 2014 Feb; 4():4115. PubMed ID: 24534846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O₃.
    Jia CL; Urban KW; Alexe M; Hesse D; Vrejoiu I
    Science; 2011 Mar; 331(6023):1420-3. PubMed ID: 21415348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-resolution measurement of oxygen concentration in oxide materials.
    Jia CL; Urban K
    Science; 2004 Mar; 303(5666):2001-4. PubMed ID: 15044799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of surface charging in the SEM for lithium niobate domain structure investigation.
    Kokhanchik LS
    Micron; 2009 Jan; 40(1):41-5. PubMed ID: 18448344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic scale structure changes induced by charged domain walls in ferroelectric materials.
    Li L; Gao P; Nelson CT; Jokisaari JR; Zhang Y; Kim SJ; Melville A; Adamo C; Schlom DG; Pan X
    Nano Lett; 2013 Nov; 13(11):5218-23. PubMed ID: 24070735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of ferroelastic domains in ferroelectric thin films.
    Nagarajan V; Roytburd A; Stanishevsky A; Prasertchoung S; Zhao T; Chen L; Melngailis J; Auciello O; Ramesh R
    Nat Mater; 2003 Jan; 2(1):43-7. PubMed ID: 12652672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface-induced nonswitchable domains in ferroelectric thin films.
    Han MG; Marshall MS; Wu L; Schofield MA; Aoki T; Twesten R; Hoffman J; Walker FJ; Ahn CH; Zhu Y
    Nat Commun; 2014 Aug; 5():4693. PubMed ID: 25131416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization closure in PbZr((0.42))Ti((0.58))O(3) nanodots.
    McGilly LJ; Gregg JM
    Nano Lett; 2011 Oct; 11(10):4490-5. PubMed ID: 21902207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures.
    Ahn CH; Rabe KM; Triscone JM
    Science; 2004 Jan; 303(5657):488-91. PubMed ID: 14739450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale ferroelectric field-effect writing and reading using scanning tunnelling spectroscopy.
    Kuffer O; Maggio-Aprile I; Fischer Ø
    Nat Mater; 2005 May; 4(5):378-82. PubMed ID: 15834416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical thickness for ferroelectricity in perovskite ultrathin films.
    Junquera J; Ghosez P
    Nature; 2003 Apr; 422(6931):506-9. PubMed ID: 12673246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis.
    Borisevich A; Ovchinnikov OS; Chang HJ; Oxley MP; Yu P; Seidel J; Eliseev EA; Morozovska AN; Ramesh R; Pennycook SJ; Kalinin SV
    ACS Nano; 2010 Oct; 4(10):6071-9. PubMed ID: 20919690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers.
    Huang HH; Hong Z; Xin HL; Su D; Chen LQ; Huang G; Munroe PR; Valanoor N
    ACS Nano; 2016 Nov; 10(11):10126-10134. PubMed ID: 27797485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4.
    Ikeda N; Ohsumi H; Ohwada K; Ishii K; Inami T; Kakurai K; Murakami Y; Yoshii K; Mori S; Horibe Y; Kitô H
    Nature; 2005 Aug; 436(7054):1136-8. PubMed ID: 16121175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles theory, coarse-grained models, and simulations of ferroelectrics.
    Waghmare UV
    Acc Chem Res; 2014 Nov; 47(11):3242-9. PubMed ID: 25361389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improper ferroelectricity in perovskite oxide artificial superlattices.
    Bousquet E; Dawber M; Stucki N; Lichtensteiger C; Hermet P; Gariglio S; Triscone JM; Ghosez P
    Nature; 2008 Apr; 452(7188):732-6. PubMed ID: 18401406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron emission from ferroelectric thin films enhanced by the presence of 90 degree ferroelectric domains.
    Suchaneck G; Vidyarthi VS; Gerlach G; Solnyshkin AV; Kislova IL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2555-61. PubMed ID: 18276554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization control at spin-driven ferroelectric domain walls.
    Leo N; Bergman A; Cano A; Poudel N; Lorenz B; Fiebig M; Meier D
    Nat Commun; 2015 Apr; 6():6661. PubMed ID: 25868608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.