BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18066264)

  • 1. Polarized optical coherence imaging in turbid media by use of a Zeeman laser.
    Chou C; Peng LC; Chou YH; Tang YH; Han CY; Lyu CW
    Opt Lett; 2000 Oct; 25(20):1517-9. PubMed ID: 18066264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zeeman laser-scanning confocal microscopy in turbid media.
    Peng LC; Chou C; Lyu CW; Hsieh JC
    Opt Lett; 2001 Mar; 26(6):349-51. PubMed ID: 18040320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope.
    Chang HF; Chou C; Yau HF; Chan YH; Yih JN; Wu JS
    J Microsc; 2006 Jul; 223(Pt 1):26-32. PubMed ID: 16872428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic imaging through a turbid medium by use of annular objectives for angle gating.
    Schilders SP; Gan XS; Gu M
    Appl Opt; 1998 Aug; 37(22):5320-6. PubMed ID: 18286013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circularly polarized optical heterodyne interferometer for optical activity measurement of a quartz crystal.
    Chou C; Kuo WC; Han CY
    Appl Opt; 2003 Sep; 42(25):5096-100. PubMed ID: 12962386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter.
    Chou C; Han CY; Kuo WC; Huang YC; Feng CM; Shyu JC
    Appl Opt; 1998 Jun; 37(16):3553-7. PubMed ID: 18273323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the surface effect of a small scattering object in a highly scattering medium by use of diffuse photon-pairs density wave.
    Wu JS; Yu LP; Chou C
    J Biomed Opt; 2016 Jun; 21(6):60504. PubMed ID: 27304418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two electric field Monte Carlo models of coherent backscattering of polarized light.
    Doronin A; Radosevich AJ; Backman V; Meglinski I
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2394-400. PubMed ID: 25401350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.
    Meglinski I; Kirillin M; Kuzmin V; Myllylä R
    Opt Lett; 2008 Jul; 33(14):1581-3. PubMed ID: 18628804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterodyne detection through rain, snow, and turbid media: effective receiver size at optical through millimeter wavelengths.
    Kazovsky LG; Kopeika NS
    Appl Opt; 1983 Mar; 22(5):706-10. PubMed ID: 18195859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media.
    Kunnen B; Macdonald C; Doronin A; Jacques S; Eccles M; Meglinski I
    J Biophotonics; 2015 Apr; 8(4):317-23. PubMed ID: 25328034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart optical coherence tomography for ultra-deep imaging through highly scattering media.
    Badon A; Li D; Lerosey G; Boccara AC; Fink M; Aubry A
    Sci Adv; 2016 Nov; 2(11):e1600370. PubMed ID: 27847864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal detection in turbid water using temporally encoded polarimetric integral imaging.
    Joshi R; Krishnan G; O'Connor T; Javidi B
    Opt Express; 2020 Nov; 28(24):36033-36045. PubMed ID: 33379707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-shot decoherence polarization gated imaging through turbid media.
    Ren Y; Jian J; Tan W; Wang J; Chen T; Zhang H; Xia W
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37486200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of turbid media optical properties on object visibility in subsurface polarization imaging.
    Nothdurft RE; Yao G
    Appl Opt; 2006 Aug; 45(22):5532-41. PubMed ID: 16855651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser photothermoacoustic heterodyned lock-in depth profilometry in turbid tissue phantoms.
    Fan Y; Mandelis A; Spirou G; Vitkin IA; Whelan WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051908. PubMed ID: 16383646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backscattering target detection in a turbid medium by use of circularly and linearly polarized light.
    Kartazayeva SA; Ni X; Alfano RR
    Opt Lett; 2005 May; 30(10):1168-70. PubMed ID: 15943299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.