These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 18066426)
1. Artifact and head movement compensation in MEG. Medvedovsky M; Taulu S; Bikmullina R; Paetau R Neurol Neurophysiol Neurosci; 2007 Oct; ():4. PubMed ID: 18066426 [TBL] [Abstract][Full Text] [Related]
2. Fine tuning the correlation limit of spatio-temporal signal space separation for magnetoencephalography. Medvedovsky M; Taulu S; Bikmullina R; Ahonen A; Paetau R J Neurosci Methods; 2009 Feb; 177(1):203-11. PubMed ID: 18996412 [TBL] [Abstract][Full Text] [Related]
3. Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography. Nenonen J; Nurminen J; Kičić D; Bikmullina R; Lioumis P; Jousmäki V; Taulu S; Parkkonen L; Putaala M; Kähkönen S Clin Neurophysiol; 2012 Nov; 123(11):2180-91. PubMed ID: 22633918 [TBL] [Abstract][Full Text] [Related]
4. MEG recordings of DC fields using the signal space separation method (SSS). Taulu S; Simola J; Kajola M Neurol Clin Neurophysiol; 2004 Nov; 2004():35. PubMed ID: 16012635 [TBL] [Abstract][Full Text] [Related]
5. Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings. Song T; Cui L; Gaa K; Feffer L; Taulu S; Lee RR; Huang M J Clin Neurophysiol; 2009 Dec; 26(6):392-400. PubMed ID: 19952563 [TBL] [Abstract][Full Text] [Related]
6. Magnetoencephalography is feasible for infant assessment of auditory discrimination. Cheour M; Imada T; Taulu S; Ahonen A; Salonen J; Kuhl P Exp Neurol; 2004 Nov; 190 Suppl 1():S44-51. PubMed ID: 15498541 [TBL] [Abstract][Full Text] [Related]
7. Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis. Mantini D; Franciotti R; Romani GL; Pizzella V Neuroimage; 2008 Mar; 40(1):160-73. PubMed ID: 18155928 [TBL] [Abstract][Full Text] [Related]
8. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. Kida T; Wasaka T; Inui K; Akatsuka K; Nakata H; Kakigi R Neuroimage; 2006 Sep; 32(3):1355-64. PubMed ID: 16806987 [TBL] [Abstract][Full Text] [Related]
9. A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data. Zumer JM; Attias HT; Sekihara K; Nagarajan SS Neuroimage; 2007 Aug; 37(1):102-15. PubMed ID: 17574444 [TBL] [Abstract][Full Text] [Related]
10. Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts. Hillebrand A; Fazio P; de Munck JC; van Dijk BW Clin Neurophysiol; 2013 Jan; 124(1):107-13. PubMed ID: 22832101 [TBL] [Abstract][Full Text] [Related]
11. Reliable recording and analysis of MEG-based corticokinematic coherence in the presence of strong magnetic artifacts. Bourguignon M; Whitmarsh S; Piitulainen H; Hari R; Jousmäki V; Lundqvist D Clin Neurophysiol; 2016 Feb; 127(2):1460-1469. PubMed ID: 26337839 [TBL] [Abstract][Full Text] [Related]
12. Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study. Haumann NT; Parkkonen L; Kliuchko M; Vuust P; Brattico E Comput Intell Neurosci; 2016; 2016():7489108. PubMed ID: 27524998 [TBL] [Abstract][Full Text] [Related]
13. Implanted medical devices or other strong sources of interference are not barriers to magnetoencephalographic recordings in epilepsy patients. Jin K; Alexopoulos AV; Mosher JC; Burgess RC Clin Neurophysiol; 2013 Jul; 124(7):1283-9. PubMed ID: 23664658 [TBL] [Abstract][Full Text] [Related]
14. Continuous head-localization and data correction in a whole-cortex MEG sensor. Wilson HS Neurol Clin Neurophysiol; 2004 Nov; 2004():56. PubMed ID: 16012679 [TBL] [Abstract][Full Text] [Related]
15. A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts. Fujiwara Y; Yamashita O; Kawawaki D; Doya K; Kawato M; Toyama K; Sato MA Neuroimage; 2009 Apr; 45(2):393-409. PubMed ID: 19150653 [TBL] [Abstract][Full Text] [Related]
16. Signal-to-noise ratio of the MEG signal after preprocessing. Gonzalez-Moreno A; Aurtenetxe S; Lopez-Garcia ME; del Pozo F; Maestu F; Nevado A J Neurosci Methods; 2014 Jan; 222():56-61. PubMed ID: 24200506 [TBL] [Abstract][Full Text] [Related]
17. Argos 500: operation of a helmet vector-MEG. Pasquarelli A; Rossi R; De Melis M; Marzetti L; Trebeschi A; Müller HP; Erné SN Neurol Clin Neurophysiol; 2004 Nov; 2004():97. PubMed ID: 16012694 [TBL] [Abstract][Full Text] [Related]
18. Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Lin FH; Witzel T; Ahlfors SP; Stufflebeam SM; Belliveau JW; Hämäläinen MS Neuroimage; 2006 May; 31(1):160-71. PubMed ID: 16520063 [TBL] [Abstract][Full Text] [Related]
19. The use of contact heat evoked potential stimulator (CHEPS) in magnetoencephalography for pain research. Gopalakrishnan R; Machado AG; Burgess RC; Mosher JC J Neurosci Methods; 2013 Oct; 220(1):55-63. PubMed ID: 23994044 [TBL] [Abstract][Full Text] [Related]
20. Rejection of stimulus-related MEG artifacts using independent component analysis. Iwaki S; Yamamoto C; Tonoike M; Yamamoto T Neurol Clin Neurophysiol; 2004 Nov; 2004():17. PubMed ID: 16012619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]