These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1806645)

  • 1. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters.
    Leybovich LB; Myerson RJ; Emami B; Straube WL
    Int J Hyperthermia; 1991; 7(6):917-35. PubMed ID: 1806645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-applicator hyperthermia system description using scattering parameters.
    Raskmark P; Larsen T; Hornsleth SN
    Int J Hyperthermia; 1994; 10(1):143-51. PubMed ID: 8144985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model.
    Heinzl L; Hunt JW; Bernstein M
    Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current sheet applicator arrays for superficial hyperthermia of chestwall lesions.
    Gopal MK; Hand JW; Lumori ML; Alkhairi S; Paulsen KD; Cetas TC
    Int J Hyperthermia; 1992; 8(2):227-40. PubMed ID: 1573312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality assurance in various radiative hyperthermia systems applying a phantom with LED matrix.
    Schneider CJ; van Dijk JD; De Leeuw AA; Wust P; Baumhoer W
    Int J Hyperthermia; 1994; 10(5):733-47. PubMed ID: 7806928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization by a matrix of light-emitting diodes of interference effects from a radiative four-applicator hyperthermia system.
    Schneider C; Van Dijk JD
    Int J Hyperthermia; 1991; 7(2):355-66. PubMed ID: 1880460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-antenna applicator for hyperthermia of tumours at intermediate depth.
    Leybovich LB; Emami B; Myerson RJ; Straube WL; Sathiaseelan V
    Int J Hyperthermia; 1991; 7(3):455-64. PubMed ID: 1919141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the SAR-distribution of the Sigma-60 applicator for regional hyperthermia using a Schottky diode sheet.
    Van Rhoon GC; Van Der Heuvel DJ; Ameziane A; Rietveld PJ; Volenec K; Van Der Zee J
    Int J Hyperthermia; 2003; 19(6):642-54. PubMed ID: 14756453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field distributions of waveguide arrays for local tumor hyperthermia.
    Becerra C; Rebollar J
    J Microw Power Electromagn Energy; 1988; 23(4):247-54. PubMed ID: 3244069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating.
    Franconi C; Raganella L; Tiberio CA
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and experimental investigations of a newly developed intracavitary applicator system for the radiothermotherapy of gynaecological tumours.
    Zimmermann M; Schorcht J; Andree W
    Int J Hyperthermia; 1993; 9(3):463-77. PubMed ID: 8515148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element simulation of Sigma 60 heating in the Utah phantom: computed and measured data compared.
    Jia X; Paulsen KD; Buechler DN; Gibbs FA; Meaney PM
    Int J Hyperthermia; 1994; 10(6):755-74. PubMed ID: 7884237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental comparison of three types of electromagnetic hyperthermia applicator.
    Johnson RH; Preece AW; Green JL
    Phys Med Biol; 1990 Jun; 35(6):761-79. PubMed ID: 2367546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom.
    van Rhoon GC; Raskmark P; Hornsleth SN; van den Berg PM
    Med Biol Eng Comput; 1994 Nov; 32(6):643-8. PubMed ID: 7723423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guide to the use of hyperthermic equipment. 1. Capacitively-coupled heating.
    Kikuchi M; Amemiya Y; Egawa S; Onoyama Y; Kato H; Kanai H; Saito Y; Tsukiyama I; Hiraoka M; Mizushina S
    Int J Hyperthermia; 1993; 9(2):187-203. PubMed ID: 8468504
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.