These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1806646)

  • 1. Phantom studies and preliminary clinical experience with the BSD 2000.
    Myerson RJ; Leybovich L; Emami B; Grigsby PW; Straube W; Von Gerichten D
    Int J Hyperthermia; 1991; 7(6):937-51. PubMed ID: 1806646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of improved microwave interstitial antennas for local hyperthermia.
    Sathiaseelan V; Leybovich L; Emami B; Stauffer P; Straube W
    Int J Radiat Oncol Biol Phys; 1991 Mar; 20(3):531-9. PubMed ID: 1995539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory.
    Ryan TP; Mechling JA; Strohbehn JW
    Int J Radiat Oncol Biol Phys; 1990 Aug; 19(2):377-87. PubMed ID: 2394617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium temperature distributions in uniform phantoms for superficial microwave applicators: implications for temperature-based standards of applicator adequacy.
    Myerson RJ; Emami BN; Perez CA; Straube W; Leybovich L; Von Gerichten D
    Int J Hyperthermia; 1992; 8(1):11-21. PubMed ID: 1545156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distribution of power and heat produced by interstitial microwave antenna arrays: I. Comparative phantom and canine studies.
    Denman DL; Elson HR; Lewis GC; Breneman JC; Clausen CL; Dine J; Aron BS
    Int J Radiat Oncol Biol Phys; 1988 Jan; 14(1):127-37. PubMed ID: 3335448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study.
    Crezee J; Van Haaren PM; Westendorp H; De Greef M; Kok HP; Wiersma J; Van Stam G; Sijbrands J; Zum Vörde Sive Vörding P; Van Dijk JD; Hulshof MC; Bel A
    Int J Hyperthermia; 2009 Nov; 25(7):581-92. PubMed ID: 19848620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas.
    Zhang Y; Joines WT; Oleson JR
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):92-7. PubMed ID: 2026438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Site-Specific Microwave Phased Array Hyperthermia Applicators Using 434 MHz Reduced Cavity-Backed Patch Antenna.
    Baskaran D; Arunachalam K
    Bioelectromagnetics; 2020 Dec; 41(8):630-648. PubMed ID: 32956531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAR distributions for 915 MHz interstitial microwave antennas used in hyperthermia for cancer therapy.
    Jones KM; Mechling JA; Trembly BS; Strohbehn JW
    IEEE Trans Biomed Eng; 1988 Oct; 35(10):851-7. PubMed ID: 3192234
    [No Abstract]   [Full Text] [Related]  

  • 14. Specific absorption rate steering by patient positioning in the 'Coaxial TEM' system: phantom investigation.
    De Leeuw AA; Mooibroek J; Lagendijk JJ
    Int J Hyperthermia; 1991; 7(4):605-11. PubMed ID: 1919155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain hyperthermia: I. Interstitial microwave antenna array techniques--the Dartmouth experience.
    Ryan TP; Trembly BS; Roberts DW; Strohbehn JW; Coughlin CT; Hoopes PJ
    Int J Radiat Oncol Biol Phys; 1994 Jul; 29(5):1065-78. PubMed ID: 8083075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a patch antenna applicator for time reversal hyperthemia.
    Dobsícek Trefná H; Vrba J; Persson M
    Int J Hyperthermia; 2010; 26(2):185-97. PubMed ID: 20146572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data.
    Ryan TP; Backus VL; Coughlin CT
    Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on the hyperthermia-therapy performances of invasive microwave antennas].
    Yang GS; Liu YH; Wang JQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):170-1, 217. PubMed ID: 16104297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific absorption rates in simulated tissue media for a 10 x 10 cm 915-MHz waveguide applicator.
    Denman DL; Kolasa MJ; Elson HR; Aron BS; Kereiakes JG
    Med Phys; 1987; 14(4):681-6. PubMed ID: 3627011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.