These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 1806647)
1. Optimization of the intensity gain of multiple-focus phased-array heating patterns. Ebbini ES; Cain CA Int J Hyperthermia; 1991; 7(6):953-73. PubMed ID: 1806647 [TBL] [Abstract][Full Text] [Related]
2. A spherical-section ultrasound phased array applicator for deep localized hyperthermia. Ebbini ES; Cain CA IEEE Trans Biomed Eng; 1991 Jul; 38(7):634-43. PubMed ID: 1879855 [TBL] [Abstract][Full Text] [Related]
3. Investigation of a cylindrical ultrasound phased-array with multiple-focus scanning for breast tumor thermal therapy. Ho CS; Ju KC; Chen YY; Lin WL Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6376-9. PubMed ID: 17945963 [TBL] [Abstract][Full Text] [Related]
4. Optimal configuration of multiple-focused ultrasound transducers for external hyperthermia. Lin WL; Chen YY; Lin SY; Yen JY; Shieh MJ; Kuo TS Med Phys; 1999 Sep; 26(9):2007-16. PubMed ID: 10505892 [TBL] [Abstract][Full Text] [Related]
5. A cylindrical-section ultrasound phased-array applicator for hyperthermia cancer therapy. Ebbini ES; Umemura SI; Ibbini M; Cain CA IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):561-72. PubMed ID: 18290188 [TBL] [Abstract][Full Text] [Related]
6. Analysis of temperature responses to diffused ultrasound focal fields produced by a sector-vortex phased array. Umemura SI; Cain CA Int J Hyperthermia; 1990; 6(3):641-54. PubMed ID: 2376675 [TBL] [Abstract][Full Text] [Related]
7. A waveform diversity method for optimizing 3-d power depositions generated by ultrasound phased arrays. Zeng XJ; Li J; McGough RJ IEEE Trans Biomed Eng; 2010 Jan; 57(1):41-7. PubMed ID: 19709949 [TBL] [Abstract][Full Text] [Related]
8. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study. Ho CS; Ju KC; Cheng TY; Chen YY; Lin WL Phys Med Biol; 2007 Aug; 52(15):4585-99. PubMed ID: 17634652 [TBL] [Abstract][Full Text] [Related]
9. The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning. Ibbini MS; Cain CA Int J Hyperthermia; 1990; 6(2):401-19. PubMed ID: 2324578 [TBL] [Abstract][Full Text] [Related]
10. A hybrid computational model for ultrasound phased-array heating in presence of strongly scattering obstacles. Botros YY; Volakis JL; VanBaren P; Ebbini ES IEEE Trans Biomed Eng; 1997 Nov; 44(11):1039-50. PubMed ID: 9353983 [TBL] [Abstract][Full Text] [Related]
11. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models. Bakker JF; Paulides MM; Obdeijn IM; van Rhoon GC; van Dongen KW Phys Med Biol; 2009 May; 54(10):3201-15. PubMed ID: 19420416 [TBL] [Abstract][Full Text] [Related]
12. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design. Kumaradas JC; Sherar MD Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930 [TBL] [Abstract][Full Text] [Related]
13. Future trends in heating technology of deep-seated tumors. Turner PF; Schaefermeyer T; Saxton T Recent Results Cancer Res; 1988; 107():249-62. PubMed ID: 3375559 [TBL] [Abstract][Full Text] [Related]
14. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia. Moros EG; Myerson RJ; Straube WL Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722 [TBL] [Abstract][Full Text] [Related]
15. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model. Heinzl L; Hunt JW; Bernstein M Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457 [TBL] [Abstract][Full Text] [Related]
16. High intensity focused ultrasound induced in vivo large volume hyperthermia under 3D MRI temperature control. Tillander M; Hokland S; Koskela J; Dam H; Andersen NP; Pedersen M; Tanderup K; Ylihautala M; Köhler M Med Phys; 2016 Mar; 43(3):1539-49. PubMed ID: 26936737 [TBL] [Abstract][Full Text] [Related]
17. Temperature feedback based heating strategy for ultrasound thermal surgery. Ju KC; Fu SL Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3729-32. PubMed ID: 24110541 [TBL] [Abstract][Full Text] [Related]
18. Heating efficiency improvement by using a spherically-concaved sectored array in focused ultrasound thermal therapy. Liu HL; Chen HW; Ju KC; Shih TC; Chen WS Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3807-10. PubMed ID: 17945801 [TBL] [Abstract][Full Text] [Related]
19. Strategies for optimized application of annular-phased-array systems in clinical hyperthermia. Wust P; Nadobny J; Felix R; Deuflhard P; Louis A; John W Int J Hyperthermia; 1991; 7(1):157-73. PubMed ID: 2051070 [TBL] [Abstract][Full Text] [Related]
20. An edge-element based finite element model of microwave heating in hyperthermia: method and verification. Kumaradas JC; Sherar MD Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]